Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. A multicomponent treatment that consisted of the residual rice straw remaining after rice harvest and Trichoderma sp. Tri-1 (Tri-1) formulated with the oilseed rape seedcake fertilizer was used in field soil infested with S. sclerotiorum. This treatment resulted in oilseed rape seed yield that was significantly greater than the nontreated control or when the fungicide carbendizem was used in the presence of this pathogen in field trials. Yield data suggested that the rice straw, oilseed rape seedcake, and Tri-1 components of this treatment all contributed incrementally. Similar treatment results were obtained regarding reduction in disease incidence. Slight improvements in yield and disease incidence were detected when this multicomponent treatment was combined with a fungicide spray. Inhibition of sclerotial germination by this multicomponent treatment trended greater than the nontreated control at 90, 120, and 150 days in field studies but was not significantly different from this control. This multicomponent treatment resulted in increased yield relative to the nontreated control in the absence of pathogen in a greenhouse pot study, while the straw alone and the straw plus oilseed rape seedcake treatments did not; suggesting that Tri-1 was capable of promoting growth. Experiments reported here indicate that a treatment containing components of a rice-oilseed rape production system augmented with Tri-1 can control S. sclerotiorum on oilseed rape, be used in integrated strategies containing fungicide sprays for control of this pathogen, and promote plant growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-12-14-0371-R | DOI Listing |
J Exp Bot
January 2025
Normandie Univ, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France.
The response of oilseed rape to sulfur (S) restriction usually consists of increasing the components of S utilization efficiency (absorption, assimilation and remobilization) to provide S to seeds. However, source-sink relationships and S management in developing seeds under sulfate restriction are poorly understood. To address this, impacts of sulfate restrictions applied at "visible bud" or "start of pod filling" stages were studied with two genotypes (Aviso, Capitol) showing similar seed yield but higher seed weight and lower number of seeds per plant for Capitol under non-limited conditions.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08001 Prešov, Slovakia.
Weeds cause a decrease in the quantity and quality of agricultural production and economic damage to producers. The prolonged use of synthetic pesticides causes problems of environmental pollution, the possible alteration of agricultural products and problems for human health. For this reason, the scientific community's search for products of natural origin, which are biodegradable, safe for human health and can act as valid alternatives to traditional herbicides, is growing.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Agriculture, Hunan Agricultural University, Changsha 410128, China.
Rapeseed ( L.) is one of the four major oilseed crops in the world and is rich in fatty acids. Changes in the fatty acid composition affect the quality of rapeseed.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures.
View Article and Find Full Text PDFInsects
January 2025
Department of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, S. Guba Str. 40, H-7400 Kaposvár, Hungary.
The selection of an appropriate and targeted crop protection technology for winter oilseed rape is crucial for the economic production of this crop. Insecticides belonging to the group of diamides and butenolides are available as seed treatments for winter oilseed rape and serve as effective tools for chemical crop protection. The objective of this study was to determine the multi-directional applicability of the active ingredients cyantraniliprole and flupyradifurone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!