Silicon micropyramids with n(+) pp(+) junctions are demonstrated to be efficient absorbers for integrated solar-driven hydrogen production systems enabling significant improvements in both photocurrent and onset potential. When conformally coated with MoSx Cly , a catalyst that has excellent catalytic activity and high optical transparency, the highest photocurrent density for Si-based photocathodes with earth-abundant catalysts is achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201501884 | DOI Listing |
Nat Commun
January 2025
School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO supported Cu single-atom catalyst with a four-coordinated Cu-O structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential.
View Article and Find Full Text PDFWater Res
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. Electronic address:
Seawater reverse osmosis (SWRO)-pressure retarded osmosis (PRO) hybrid desalination system is being actively researched to reduce energy consumption by generating energy in the PRO. However, the SWRO-PRO hybrid system still faces the following challenges: low freshwater recovery and low energy generation. To resolve these challenges, this study first proposes a novel SWRO-Solar-driven desalination (SD)-PRO hybrid system for energy-efficient desalination.
View Article and Find Full Text PDFMolecules
December 2024
Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju 52851, Republic of Korea.
Solar hydrogen production is a promising pathway for sustainable CO-free hydrogen production. It is mainly classified into three systems: photovoltaic electrolysis (PV-EC), photoelectrochemical (PEC) system, and particulate photocatalytic (PC) system. However, it still has trouble in commercialization due to the limitation of performance and economic feasibility in the large-scale system.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, University of Nevada Reno, Reno, Nevada, USA.
Hydrogen gas (H) can be produced via entirely solar-driven photocatalytic water splitting (PWS). A promising set of organic materials for facilitating PWS are the so-called inverted singlet-triplet, INVEST, materials. Inversion of the singlet (S) and triplet (T) energies reduces the population of triplet states, which are otherwise destructive under photocatalytic conditions.
View Article and Find Full Text PDFInorg Chem
January 2025
Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Interfacial engineering is considered an effective strategy to improve the electrochemical water-splitting activity of catalysts by modulating the local electronic structure to expose more active sites. Therefore, we report a platinum-cobaltic oxide nanosheets (Pt/CoO NSs) with plentiful grain boundary as the efficient bifunctional electrocatalyst for water splitting. The Pt/CoO NSs exhibit a low overpotential of 55 and 201 mV at a current density of 10 mA cm for the hydrogen evolution reaction and oxygen evolution reaction in 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!