This study investigates the toxicity of bare iron oxide nanoparticles (IONPs) and surface functionalization iron oxide nanoparticles (SF-IONPs) to the growth of freshwater microalgae Chlorella sp. This study is important due to the increased interest on the application of the magnetic responsive IONPs in various fields, such as biomedical, wastewater treatment, and microalgae harvesting. This study demonstrated that the toxicity of IONPs was mainly contributed by the indirect light shading effect from the suspending nanoparticles which is nanoparticles concentration-dependent, direct light shading effect caused by the attachment of IONPs on cell and the cell aggregation, and the oxidative stress from the internalization of IONPs into the cells. The results showed that the layer of poly(diallyldimethylammonium chloride) (PDDA) tended to mask the IONPs and hence eliminated oxidative stress toward the protein yield but it in turn tended to enhance the toxicity of IONPs by enabling the IONPs to attach on cell surfaces and cause cell aggregation. Therefore, the choice of the polymer that used for surface functionalize the IONPs is the key factor to determine the toxicity of the IONPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2015.1086300 | DOI Listing |
Nanoscale
March 2025
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
The effectiveness of orally delivered probiotics in treating gastrointestinal diseases is restricted by inadequate gut retention. In this study, we present a magnetically controlled strategy for probiotic delivery, which enables controlled accumulation and residence of probiotics in the intestine. The magnetically controlled probiotic is established by attaching amino-modified iron oxide (FeO-NH NPs) to polydopamine-coated GG (LGG@P) through electrostatic self-assembly and named as LGG@P@FeO.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru.
The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd, Boca Raton, Florida 33431, United States.
Studying the multiscale mechanics of bio-based composites offers unique perspectives on underlying structure-property relations. Cellular materials, such as wood, are highly organized, hierarchical assemblies of load-bearing structural elements that respond to mechanical stimuli at the microscopic, mesoscopic and macroscopic scale. In this study, we modified oak wood with nanocrystalline ferrihydrite, a widespread ferric oxyhydroxide mineral, and characterized the resulting mechanical properties of the composite at various levels of organization.
View Article and Find Full Text PDFSci Rep
March 2025
Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing, China.
The long ring pommel Dao (a kind of single-edged blade), a significant indigenous Chinese weaponry innovation of the Western Han Dynasty, is researched this study. Employing a comparative research methodology, we conduct a scientific analysis of samples excavated from the tombs of marquisates across various regions of China, spanning from the northern to the southern extremities. This analysis encompasses metallographic examination, inclusion composition analysis, and scanning electron microscopy (SEM), complemented by the application of a metallurgical kinetic model to reconstruct key smelting operations.
View Article and Find Full Text PDFSci Rep
March 2025
Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
This study investigates the effect of varying iron-to-nickel ratios on the catalytic performance of Fe-Ni oxide nanoparticles (NPs) for the oxygen evolution reaction (OER). Addressing the issue of high energy wastage due to large overpotentials in OER, we synthesized and characterized different NP catalysts with different Fe: Ni oxide ratios. Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) were employed to determine the morphology, elemental and phase composition of the NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!