Background: Centipeda minima (Ebushicao) has been used for the treatment of various diseases, such as nasal allergies, rhinitis and sinusitis, nasopharyngeal carcinoma, cough, and headache. This study aims to investigate the anticancer activities of Centipeda minima ethanol extracts (CME) against nasopharyngeal carcinoma cell CNE-1 and their underlying mechanism.
Methods: CNE-1 cells were treated with different concentrations (15-50 μg/mL) of CME for different time intervals (24, 48, and 72 h). Cytotoxicity of CME was determined by MTT assay. Cell morphological changes were observed by fluorescence microscopy after HO 33258 staining. Cell cycle status was evaluated by flow cytometry following propidium iodide staining. Apoptosis was detected by flow cytometry following annexin V-FITC/PI staining. The levels of apoptosis-associated and PI3K-Akt-mTOR signaling related proteins were measured by western blotting analysis.
Results: CME (15-50 μg/mL) significantly inhibited the proliferation of CNE-1 in a dose- and time-dependent manner (P = 0.026 for 15 μg/mL, P < 0.001 for 25, 30, 40, and 50 μg/mL, respectively); the IC50 values (μg/mL) were 41.57 ± 0.17, 30.34 ± 0.06 and 24.98 ± 0.08 for 24, 48 and 72 h treatments, respectively. Significant morphological changes of CNE-1 cells displaying apoptosis were observed after CME treatment. CME showed low cytotoxicity toward normal LO2 cells. CNE-1 cells were arrested in the G2/M phase while treated with 15, 25, 40 μg/mL of CME, respectively (P = 0.032, P = 0.0053, P < 0.001). CME (15, 25, 40 μg/mL) down-regulated Bcl-2 expression (P = 0.032, P = 0.0074, P < 0.001), and up-regulated Bax (P = 0.026, P = 0.0056, P < 0.001) with activation of caspase-3, caspase-8, caspase-9, and PARP observed in CNE-1 cells (P = 0.015, P = 0.0067, P < 0.001 for caspase 3; P = 0.210, 0.028, < 0.001 for caspase 8; P = 0.152, 0.082, 0.0080 for caspase 9; P = 0.265, 0.0072, < 0.001 for PARP). CME suppressed the activation of the PI3K-AKT-mTOR pathway (P = 0.03, 0.0007, 0.004, 0.006, 0.022 for p-PI3K, p-Akt-Ser(473), p-Akt-Thr(308), p-mTOR-Ser(2448), p-mTOR-Ser(2481), respectively after 40 μg/mL of CME treated for 24 h).
Conclusion: CME inhibited the proliferation of CNE-1 cells and activation of the PI3K-AKT-mTOR signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575463 | PMC |
http://dx.doi.org/10.1186/s13020-015-0058-5 | DOI Listing |
J Ethnopharmacol
December 2024
Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China. Electronic address:
Ethnophamacological Relevance: Centipeda minima (L.) A. Braun & Asch (C.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Guangxi Medical University, Nanning 530021, China.
Curr Comput Aided Drug Des
October 2024
Hunan Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
Background: Centipeda minima (CM) is a traditional Chinese herbal medicine used for the treatment of sinusitis and rhinitis, and it possesses anti-cancer properties. However, the mechanism of CM in the treatment of nasopharyngeal carcinoma (NPC) remains unclear.
Objective: This study aimed to explore the mechanism of CM in the treatment of NPC using a network pharmacology approach.
Clin Cosmet Investig Dermatol
October 2024
Dermatology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
Phytomedicine
September 2024
State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. Electronic address:
Background: Chemotherapeutic agents including cisplatin, gemcitabine, and pemetrexed, significantly enhance the efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) by increasing PD-L1 expression and potentiating T cell cytotoxicity. However, the low response rate and adverse effects limit the application of chemotherapy/ICI combinations in patients.
Methods: We screened for medicinal herbs that could perturb PD-L1 expression and enhance T cell cytotoxicity in the presence of anti-PD-L1 antibody, and investigated the underlying mechanisms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!