Our previous studies on West Nile virus (WNV) strains isolated from human patients in India suggested substantial variation at the genetic level reflecting their variable pathogenesis. This study describes the development of reverse genetics system for a neurovirulent WNV isolate 68856 and its characterization. Full length viral cDNA was cloned into bacterial artificial chromosome (BAC) under the transcription control of T7 promoter. The RNA transcripts obtained by in vitro transcription were infectious in mammalian cells upon transfection. Cytopathic effect caused by synthetic RNA transcripts in mammalian cells, detection of cell associated viral protein after transfection and recovery of genetic markers in the progeny virus genome marked the successful development of reverse genetics system for WNV. Replication potential and plaque morphology of newly expressed virus along with its antigenic cross reactivity with the parental virus suggests synthesis of biologically identical replicative virus. Comparative neuropathogenesis studies in murine model indicated that the three genetic changes occurred in the recombinant virus during in vitro transcription has no impact on viral pathogenesis. The stable infectious cDNA clone generated from the neurovirulent Indian WNV strain will serve as a valuable experimental tool to study the viral factors contributing towards pathogenesis, host-virus interaction and immune evasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2015.09.008 | DOI Listing |
Int J Biol Sci
January 2025
Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China.
Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.
View Article and Find Full Text PDFCardiol Young
January 2025
Congenital Heart Center, Division of Pediatric Cardiology, Departments of Pediatrics, University of Florida, Gainesville, FL, USA.
Mitochondrial trifunctional protein deficiency is a long-chain fatty acid disorder that may include manifestations of severe cardiomyopathy and arrhythmias. The pathophysiology for the severe presentation is unclear but is an indicator for worse outcomes. Triheptanoin, a synthetic medium chain triglyceride, has been reported to reverse cardiomyopathy in some individuals, but there is limited literature in severe cases.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
Background: Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.
Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.
View Article and Find Full Text PDFBMC Cancer
January 2025
Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
Background: Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer, characterized by a dismal prognosis. In the absence of drug-targetable receptors, chemotherapy remains the sole systemic treatment alternative. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs) that target programmed death 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4), have provided renewed optimism for the treatment of patients with TNBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!