Milk is an important source of nutrients for various risk populations, including infants. The accurate measurement of vitamin D in milk is necessary to provide adequate supplementation advice for risk groups and to monitor regulatory compliance. Currently used liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods are capable of measuring only four analogues of vitamin D in unfortified milk. We report here an accurate quantitative analytical method for eight analogues of vitamin D: Vitamin D2 and D3 (D2 and D3), 25-hydroxy D2 and D3, 24,25-dihydroxy D2 and D3, and 1,25-dihydroxyD2 and D3. In this study, we compared saponification and protein precipitation for the extraction of vitamin D from milk and found the latter to be more effective. We also optimised the pre-column derivatisation using 4-phenyl-l,2,4-triazoline-3,5-dione (PTAD), to achieve the highest sensitivity and accuracy for all major vitamin D forms in milk. Chromatography was optimised to reduce matrix effects such as ion-suppression, and the matrix effects were eliminated using co-eluting stable isotope labelled internal standards for the calibration of each analogue. The analogues, 25-hydroxyD3 (25(OH)D3) and its epimer (3-epi-25(OH)D3) were chromatographically resolved, to prevent over-estimation of 25(OH)D3. The method was validated and subsequently applied for the measurement of total vitamin D levels in human, cow, mare, goat and sheep milk samples. The detection limits, repeatability standard deviations, and recovery ranges were from 0.2 to 0.4 femtomols, 6.30-13.5%, and 88.2-105%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2015.08.017DOI Listing

Publication Analysis

Top Keywords

vitamin
8
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8
vitamin milk
8
analogues vitamin
8
matrix effects
8
milk
7
simultaneous quantitative
4
quantitative analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!