REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

Sci Rep

Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.

Published: September 2015

The transcription factor GATA6 is a critical regulator of cell proliferation and development in the gastrointestinal tract. We have recently reported that GATA6 induces the expression of the intestinal stem cell marker LGR5 and enhances the clonogenicity and tumorigenicity of colon cancer cells, but not the growth of these cells cultured under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is also a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 enhances the growth of colon cancer cells under adherent conditions and is required for their tumorigenicity. Taken together, our findings demonstrate that GATA6 simultaneously induces the expression of genes essential for the growth of colon cancer cells under adherent conditions (REG4) and genes required for their clonogenicity (LGR5), and that the miR-363-GATA6-REG4/LGR5 signaling cascade promotes the tumorigenicity of colon cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585703PMC
http://dx.doi.org/10.1038/srep14291DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
cancer cells
16
adherent conditions
12
target gata6
8
induces expression
8
tumorigenicity colon
8
conditions reg4
8
growth colon
8
cells adherent
8
gata6
6

Similar Publications

Colon cancer is a significant health concern, and obesity is a well-established risk factor. However, previous studies have mainly focused on assessing body weight as a risk factor for colon cancer at a specific time point. This nationwide cohort study investigated the association between body weight changes, which can fluctuate throughout an individual's lifespan, and the incidence of colon cancer using the South Korean population database provided by the National Health Insurance Service (NHIS).

View Article and Find Full Text PDF

Introduction: The standard of care for stage III colon cancer is 3 or 6 months of double-drug regimen chemotherapy following radical surgery. However, patients with positive circulating tumour DNA (ctDNA) exhibit a high risk of recurrence risk even if they receive standard adjuvant chemotherapy. The potential benefit of intensified adjuvant chemotherapy, oxaliplatin, irinotecan, leucovorin and fluoropyrimidine (FOLFOXIRI), for ctDNA-positive patients remains to be elucidated.

View Article and Find Full Text PDF

In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.

View Article and Find Full Text PDF

Targeted therapy is preferable over other therapeutics due to its limitation of drawbacks and better pharmaceutical outcomes. VEGF and its receptors have been observed to be hyper-activated in many cancer types and are considered promising targets for assigning anticancer agents. The current study is directed towards synthesis of novel antiproliferative 2-oxoindolin-3-ylidenes incorporating urea function with VEGFR-2 properties.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!