Background: Functional remediation is a novel intervention with demonstrated efficacy at improving functional outcome in euthymic bipolar patients. However, in a previous trial no significant changes in neurocognitive measures were detected. The objective of the present analysis was to test the efficacy of this therapy in the enhancement of neuropsychological functions in a subgroup of neurocognitively impaired bipolar patients.
Method: A total of 188 out of 239 DSM-IV euthymic bipolar patients performing below two standard deviations from the mean of normative data in any neurocognitive test were included in this subanalysis. Repeated-measures analyses of variance were conducted to assess the impact of the treatment arms [functional remediation, psychoeducation, or treatment as usual (TAU)] on participants' neurocognitive and functional outcomes in the subgroup of neurocognitively impaired patients.
Results: Patients receiving functional remediation (n = 56) showed an improvement on delayed free recall when compared with the TAU (n = 63) and psychoeducation (n = 69) groups as shown by the group × time interaction at 6-month follow-up [F 2,158 = 3.37, degrees of freedom (df) = 2, p = 0.037]. However, Tukey post-hoc analyses revealed that functional remediation was only superior when compared with TAU (p = 0.04), but not with psychoeducation (p = 0.10). Finally, the patients in the functional remediation group also benefited from the treatment in terms of functional outcome (F 2,158 = 4.26, df = 2, p = 0.016).
Conclusions: Functional remediation is effective at improving verbal memory and psychosocial functioning in a sample of neurocognitively impaired bipolar patients at 6-month follow-up. Neurocognitive enhancement may be one of the active ingredients of this novel intervention, and, specifically, verbal memory appears to be the most sensitive function that improves with functional remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0033291715001713 | DOI Listing |
Polymers (Basel)
December 2024
Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.
The one-dimensional nanomaterials known as nanofibers have remarkable qualities, such as large surface areas, adjustable porosity, and superior mechanical strength. Ionomers, types of polymers, have ionic functional groups that give them special properties, including high mechanical strength, water absorption capacity, and ionic conductivity. Integrating ionomers and nanofibers with diverse materials and advanced methodologies has been shown to improve the mechanical strength, processing capacity, and multifunctional attributes of ionomeric nanofibers.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Diesel spills and nuclides pollution cause global ecosystem and human health problems. The remediation of contaminated soil using woody plants has received considerable attention. Differences in plant species and sex can lead to differences in tolerance to various stressors.
View Article and Find Full Text PDFToxics
December 2024
Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.
Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
The advent of self-propelled micro/nanomotors represents a paradigm shift in the field of environmental remediation, offering a significant enhancement in the efficiency of conventional operations through the exploitation of the material phenomenon of active motion. Despite the considerable promise of micro/nanomotors for applications in environmental remediation, there has been a paucity of reviews that have focused on this area. This review identifies the current opportunities and challenges in utilizing micro/nanomotors to enhance contaminant degradation and removal, accelerate bacterial death, or enable dynamic environmental monitoring.
View Article and Find Full Text PDFMolecules
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania.
The recovery of palladium from aqueous solutions is important due to its critical role in various industrial applications and the growing demand for sustainable resource management. This study investigates the potential of hybrid materials composed of MgAl layered double hydroxides (LDHs), chitosan, and ionic liquids (methyl trialchil ammonium chloride) for the efficient adsorption of palladium ions from low-concentration aqueous solutions. Comprehensive characterization techniques, including X-ray diffraction (RX), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TG), were employed to elucidate the structural and compositional properties of the hybrid materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!