We investigated the energy activity of mitochondria from rat cardiomyocytes under the artificial carbon dioxide hypobiosis, which led to physiological changes in the organism (the decrease of body temperature, the reduction of heart rate, etc.). The respiratory and phosphorylation activities in mitochondria of cardiomyocytes is reduced when using two oxidation substrates (succinate and malate), which characterize the rate of the oxygen consumption by the mitochondria. The partial uncoupling of the oxidation and phosphorylation processes when using the malate unlike succinate was established. The activity of NADH-KoQ-oxidoreductase (complex I of the respiratory chain) is inhibited, but the activities of succinate dehydrogenase and cytochrome oxidase don't change. Probably, the priority of the succinate use under the artificial hypobiosis provides the support of the mitochondria functional activity on a sufficient energy level. It is evidenced by the ATP-synthetase activity. The modifications of the structural and functional state of the inner mitochondria membrane of the cardiomyocytes are directed to the adaptation under the artificial carbon dioxide hypobiosis.

Download full-text PDF

Source
http://dx.doi.org/10.15407/fz61.02.015DOI Listing

Publication Analysis

Top Keywords

artificial carbon
8
carbon dioxide
8
dioxide hypobiosis
8
mitochondria
6
[the energy
4
energy function
4
function rat
4
rat cardiac
4
cardiac mitochondria
4
artificial
4

Similar Publications

Mangrove-based carbon market projects: What stakeholders need to address during pre-feasibility assessment.

J Environ Manage

January 2025

Ecoresolve, San Francisco, CA, USA; Earth Observation Centre, Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia; Department of Civil Engineering, College of Engineering, American University of Sharjah (AUS), P.O. Box 26666, Sharjah, United Arab Emirates; Department of Geography, University of California-Berkeley, Berkeley, CA, 94709, USA. Electronic address:

Mangrove-based carbon market projects (MbCMP) aim to conserve, protect and restore mangrove habitats in order to generate high quality blue carbon credits via a crediting program, as a contribution to climate change mitigation/adaptation, biodiversity conservation, ecosystem services provision and local socio-economic development. The blue carbon credits generated are transferable, verifiable and sold through carbon markets to earn additional income for governments and local communities. The main aim of the paper is to provide important considerations for pre-field planning, that is, how challenges associated with fieldwork, project implementation, and monitoring reporting and verification (MRV) can be addressed with proper pre-field planning.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.

View Article and Find Full Text PDF

Scandium-III-nitrides: A New Material Platform for Semiconductor Photocatalysts with High Reducing Power.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada.

Semiconductor nanowires have become emerging photocatalysts in artificial photosynthesis processes for solar fuel production. For reduction reactions, semiconductor photocatalysts with high reducing powers are highly desirable, especially for chemicals that are extremely difficult to reduce. This study introduces a new semiconductor photocatalyst, scandium (Sc)-III-nitrides, which have higher reducing powers than all conventional semiconductor photocatalysts.

View Article and Find Full Text PDF

Revealing the Principles of Confining Electroplated Lithium beneath the CVD Grown Single Layer 2D Materials.

Small

January 2025

MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!