Selenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (Se(IV) and Se(VI)) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L(-1) of selenium (Se(IV), Se(VI), Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-015-9767-zDOI Listing

Publication Analysis

Top Keywords

chemical species
8
seleniferous regions
8
bioaccessibility ingestion
8
seiv sevi
8
plant biomass
8
compared control
8
species
6
bioaccessibility
5
plant
5
bioaccessibility selenium
4

Similar Publications

Waste Heat and Habitability: Constraints from Technological Energy Consumption.

Astrobiology

January 2025

Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.

View Article and Find Full Text PDF

Background And Aims: The currently recognized diversity of pollination strategies requires pollination syndromes to be updated. Described a decade ago, kleptomyiophily is a deceptive pollination system in which plants exploit the nutrient-seeking behavior of females of kleptoparasitic flies (Chloropidae and Milichiidae) by olfactorily mimicking their insect host. Such a pollination system was already hypothesized for pollination by biting midges (Ceratopogonidae) but has never been formalized.

View Article and Find Full Text PDF

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.

View Article and Find Full Text PDF

Catechins in tea, as promoters of human health, have attracted widespread attention. Herein, a dual-signal mode (colorimetric and fluorescence) sensor array for catechin species fingerprinting was built based on PtNi bunched nanoparticle (PtNi-BNP)--phenylenediamine (OPD)-HO system. PtNi-BNPs catalyze the reaction between OPD and HO to produce oxidized OPD (oxOPD) with both colorimetric (yellow) and fluorescent properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!