STAT3 contributes to NK cell recognition by modulating expression of NKG2D ligands in adriamycin-resistant K562/AO2 cells.

Int J Hematol

Department of Hematology, The Key Medical Subject of Jiangsu, The Affiliated Hospital of Southeast University, Zhongda Hospital, Hunan Road Dingjia Qiao 87, Nanjing, 210009, China.

Published: November 2015

Leukemic cells can survive after chemotherapy by acquisition of multidrug resistance genes, but other phenotypes related to escape from immune recognition remain elusive. Adriamycin-resistant K562/AO2 cells are less susceptible to elimination by NK cells compared with wild type K562 cells due to lower expression of NKG2D ligands. Treatment of K562/AO2 cells with STAT3 inhibitor VII resulted in reduced expression of multidrug resistance gene P-glycoprotein, and up-regulation of NKG2D ligands on K562/AO2 cells. Meanwhile, K562/AO2 cells treated with STAT3 inhibitor proliferated less and were more susceptible to killing by NK cells than untreated K562/AO2 cells. The enhanced cytotoxicity of NK cells against K562/AO2 cells was partly blocked by treatment of NK cells with anti-NKG2D antibodies. These data suggest that STAT3 contributes to NK cell recognition by modulating NKG2D ligands in K562/AO2 cells, which may a mechanism by which cells survive and cause relapse of leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12185-015-1860-7DOI Listing

Publication Analysis

Top Keywords

k562/ao2 cells
32
nkg2d ligands
16
cells
15
stat3 contributes
8
contributes cell
8
cell recognition
8
recognition modulating
8
expression nkg2d
8
k562/ao2
8
adriamycin-resistant k562/ao2
8

Similar Publications

Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder due to the existence of BCR-ABL fusion protein that allows the cells to keep proliferating uncontrollably. Although tyrosine kinase inhibitors can inhibit the activity of BCR-ABL fusion protein to trigger the cells apoptosis, drug resistance or intolerance exists in part of CML patients. Arsenic sulfide in its raw form (r-AsS) can be orally administrated and certain therapeutic effects have been found out in the treatment of hematologic malignancies through inducing cell apoptosis.

View Article and Find Full Text PDF

Objective: To study the inhibitory effect of serum containing Fuzheng Jiedu decoction on leukemia multi-drug-resistance K562/A02 cells and its possible mechanism.

Methods: The MTT method was used to detect the inhibitory rate of K562/AO2 cells treated with serum containing Fuzheng Jiedu decoction; the flow cytometry was used to detect the inhibitory effect of serum containing medicin on growth of K562/AO2 cells and P-gp expression; the Q-PCR was used to assay the BCL-2 mRNA expression; the Western blot was used to detect the BCL-2 protein expression.

Results: MTT cytotoxic test showed serum containing Fuzheng Jiedu decoction could inhibit K562/A02 cell growth, and the inhibitory rate increased with the increase of drug concentration; the flow cytometry showed that the serum containing Fuzheng Jiedu decoction could promote K562/A02 cell apoptosis in a concentration-dependent manner.

View Article and Find Full Text PDF

STAT3 contributes to NK cell recognition by modulating expression of NKG2D ligands in adriamycin-resistant K562/AO2 cells.

Int J Hematol

November 2015

Department of Hematology, The Key Medical Subject of Jiangsu, The Affiliated Hospital of Southeast University, Zhongda Hospital, Hunan Road Dingjia Qiao 87, Nanjing, 210009, China.

Leukemic cells can survive after chemotherapy by acquisition of multidrug resistance genes, but other phenotypes related to escape from immune recognition remain elusive. Adriamycin-resistant K562/AO2 cells are less susceptible to elimination by NK cells compared with wild type K562 cells due to lower expression of NKG2D ligands. Treatment of K562/AO2 cells with STAT3 inhibitor VII resulted in reduced expression of multidrug resistance gene P-glycoprotein, and up-regulation of NKG2D ligands on K562/AO2 cells.

View Article and Find Full Text PDF

Aims: To investigate the roles of matrine in regulating immune functions and its effect on the proliferation of leukemic cells.

Methods: Human leukemia K562, OUN-1, HL-60, U937, K562/AO2 cell lines and primary leukemic cells were used to detect the NKG2D ligands (NKG2DL) expression such as MICA/B, ULBP-1, ULBP-2, ULBP-3, and NK cells receptor NKG2D, CD158a, CD158b were detected by flow cytometry. Cell cytotoxic activity of human NK cells and CIK cells against K562 leukemia cells was detected using CFSE/PI double staining.

View Article and Find Full Text PDF

[Effects of matrine on the expression of NKG2D ligands in leukemia cells].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2013

Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China. E-mail:

This study was aimed to analyze the expression of NKG2D ligands in human leukemic cells and to investigate the effects of matrine on NKG2D ligand expression. The expressions of NKG2D ligand MICA/B, ULBP1-3 in several human leukemia cell lines (K562, OUN-1, U937 and K562/AO2), as well as primary leukemic cells isolated from malignant leukemia patients were analyzed by flow cytometry. After treatment with different doses of matrine, the expression level of NKG2D ligands in these leukemic cells was detected by FCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!