Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. Here we first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. We then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surface pressure) can hardly be avoided during standard cryo-EM specimen preparation. We thus suggest that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775786 | PMC |
http://dx.doi.org/10.1016/j.bpj.2015.07.050 | DOI Listing |
J Microsc
November 2024
Department of Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany.
In this short and popular review, we summarise some of our findings analysing the replication cycles of large DNA viruses using scanning transmission electron tomography (STEM tomography) that we applied in the laboratory of Paul Walther. It is also a tribute to a very kind and expert scientist, who recently retired. Transmission electron microscopy (TEM), in particular cryo-EM, has benefited tremendously from recent developments in instrumentation.
View Article and Find Full Text PDFNat Methods
November 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep learning-based software to address map anisotropy and particle misalignment caused by the preferred-orientation problem.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA. Electronic address:
Apoferritin (apoF) is commonly used as a test specimen in single-particle electron cryo-microscopy (cryo-EM), since it consistently produces density maps that go to 3 Å resolution or higher. When we imaged apoF with a laser phase plate (LPP), however, we observed more severe particle-to-particle variation in the images than we had previously thought to exist. Similarly, we found that images of ribulose bisphosphate carboxylase/oxygenase (rubisco) also exhibited a much greater amount of heterogeneity than expected.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville TN, USA.
Cryo-electron microscopy (cryo-EM) has become an indispensable technique for determining three-dimensional structures of biological macromolecules. A critical aspect of achieving high-resolution cryo-EM reconstructions is accurately determining and correcting for the microscope's contrast transfer function (CTF). The CTF introduces defocus-dependent distortions during imaging; if not properly accounted for, the CTF can distort features in and limit the resolution of 3D reconstructions.
View Article and Find Full Text PDFNat Commun
September 2024
Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, EPFL, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Rte. de la Sorge, 1015, Lausanne, Switzerland.
Cryo-transmission electron microscopy (cryo-EM) of frozen hydrated specimens is an efficient method for the structural analysis of purified biological molecules. However, cryo-EM and cryo-electron tomography are limited by the low signal-to-noise ratio (SNR) of recorded images, making detection of smaller particles challenging. For dose-resilient samples often studied in the physical sciences, electron ptychography - a coherent diffractive imaging technique using 4D scanning transmission electron microscopy (4D-STEM) - has recently demonstrated excellent SNR and resolution down to tens of picometers for thin specimens imaged at room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!