Chromatin-related proteins have emerged as important players in the initiation and maintenance of several types of cancer. In addition to the established role of histone-modifying enzymes and chromatin remodelers in promoting and sustaining malignant phenotypes, recent findings suggest that the basic components of chromatin, the histone proteins, also suffer severe alterations in cancer and may contribute to the disease. Histopathological examination of clinical samples, characterization of the mutational landscape of various types of cancer and functional studies in cancer cell lines have highlighted the linker histone H1 both as a potential biomarker and a driver in cancer. This review summarizes H1 abnormalities in cancer identified by various approaches and critically discusses functional implications of such alterations, as well as potential mechanisms through which they may contribute to the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagrm.2015.09.008 | DOI Listing |
Lett Appl Microbiol
March 2025
Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Breast cancer has emerged as the leading cause of global cancer incidence, surpassing lung cancer. Accumulating evidence suggests that probiotics exhibit inhibitory effect on breast cancer progression, highlighting the need to identify gut flora-derived probiotics with potential anti-breast cancer properties. Here, we investigated the effect of the cell-free supernatant of C.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
Department of Human Sciences, The Ohio State University, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. Electronic address:
Background: The imperative need for early cancer detection, which is crucial for improved survival rates in many severe cancers such as lung cancer, remains challenging due to the lack of reliable early-diagnosis technologies and robust biomarkers. To address this gap, innovative screening platforms are essential to unveil the chemical signatures of lung cancer and its treatments. It is established that the oxidative tumor environment induces alterations in host metabolic processes and influences endogenous volatile synthesis.
View Article and Find Full Text PDFFree Radic Biol Med
March 2025
Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA. Electronic address:
Acetyl-CoA Synthetase Short Chain Family Member-1 (ACSS1) catalyzes the ligation of acetate and coenzyme A to generate acetyl-CoA in the mitochondria to produce ATP through the tricarboxylic acid (TCA) cycle. We recently generated an ACSS1-acetylation (Ac) mimic knock-in mouse, where lysine 635 was mutated to glutamine (K635Q), which structurally and biochemically mimics an acetylated lysine. ACSS1 enzymatic activity is regulated, at least in part, through the acetylation of lysine 635 in mice (lysine 642 in humans), a Sirtuin 3 deacetylation target.
View Article and Find Full Text PDFMech Ageing Dev
March 2025
Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India. Electronic address:
Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle.
View Article and Find Full Text PDFJ Control Release
March 2025
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Genable (Beijing) Biotechnology Co., Ltd, (#)38 Yongda Road, Beijing 102609, China. Electronic address:
Gene therapy has attracted widespread attention in recent years, and one of the important delivery systems is the LNP. However, many LNPs have potential toxicity and accumulate in the liver. Here, we designed and synthesized a Gemini-type mannosylated peptidyl lipid called CManDA(M), which, in combination with the cytidinyl lipid DNCA(D) and the peptidyl lipid CLD(C) (D/50C/50 M), could transfect siRNA (siG12S) into A549 cells to target and silence the KRAS gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!