Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides.

ChemMedChem

Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bengaluru 560064, Karnataka (India).

Published: October 2015

Infectious diseases continue to be one of the major contributors to human morbidity. The rapid rate at which pathogenic microorganisms have developed resistance against frontline antimicrobials has compelled scientists to look for new alternatives. Given their vast antimicrobial repertoire, substantial research effort has been dedicated toward the development of antimicrobial peptides (AMPs) as alternative drugs. However, inherent limitations of AMPs have driven substantial efforts worldwide to develop synthetic mimics of AMPs. This review focuses on the progress that has been made toward the development of small molecules that emulate the properties of AMPs, both in terms of design and biological activity. Herein we provide an extensive discussion of the structural features of various designs and we examine biological properties that have been exploited. Furthermore, we raise a number of questions for which the field has yet to provide solutions and discuss possible future research directions that remain either unexploited or underexploited.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201500299DOI Listing

Publication Analysis

Top Keywords

small molecules
8
antimicrobial peptides
8
membrane-active small
4
molecules designs
4
designs inspired
4
inspired antimicrobial
4
peptides infectious
4
infectious diseases
4
diseases continue
4
continue major
4

Similar Publications

Based on their ability to canvas vast genetic or chemical space at low cost and high speed, DNA-encoded libraries (DEL) have served to enable both genomic and small molecule discovery. Current DEL chemical library screening approaches focus primarily on target-based affinity or activity. Here we describe an approach to record the phenotype-based activity of DNA-encoded small molecules on their cognate barcode in living cells.

View Article and Find Full Text PDF

The presence of Hg causes substantial stress to plants, adversely affecting growth and health by disrupting cell cycle divisions, photosynthesis, and ionic homeostasis. Accurate visualization of the spatiotemporal distribution of Hg in plant tissues is crucial for the management of Hg pollution; however, the related research is still at its early stage. Herein, a small-molecule amphiphilic fluorescent probe (termed ) was developed for the specific detection of Hg with a high sensitivity (~16 nM).

View Article and Find Full Text PDF

The role of Aha1 in cancer and neurodegeneration.

Front Mol Neurosci

December 2024

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.

The 90 kDa Heat shock protein (Hsp90) is a family of ubiquitously expressed molecular chaperones responsible for the stabilization and maturation of >400 client proteins. Hsp90 exhibits dramatic conformational changes to accomplish this, which are regulated by partner proteins termed co-chaperones. One of these co-chaperones is called the activator or Hsp90 ATPase activity homolog 1 (Aha1) and is the most potent accelerator of Hsp90 ATPase activity.

View Article and Find Full Text PDF

Purpose Of The Review: This review aims to explore the pivotal role of long non-coding RNAs (lncRNAs) as epigenetic regulators in the pathogenesis of multiple myeloma (MM). Additionally, we have portrayed the dual role of lncRNAs in the epigenetic landscape of MM pathobiology.

Recent Findings: In MM, lncRNAs are pivotal for proliferation, progression, and drug resistance by acting as miRNA sponges, regulating mRNA activity through microRNA recognition elements (MREs).

View Article and Find Full Text PDF

Facile Fabrication of Monodisperse Vinyl Hybrid Core-Shell Silica Microsphere with Short Range Radial Channel in bi-phase System.

Small

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.

The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!