The present study attempts to investigate the consumer's intention to purchase organic food in the context of a developing nation (India) using the Theory of Planned Behavior (TPB). Further, the study has incorporated additional constructs (moral attitude, health consciousness and environmental concern) in the TPB and measured its appropriateness. Responses were collected from 220 young consumers adopting convenience sampling approach. Data were analyzed using Structural Equation Modeling (SEM) to evaluate the strength of relationship between the constructs. The findings reported that the TPB partially supported the organic food purchase intention. Among the additional constructs incorporated, moral attitude and health consciousness positively influenced the consumer's intention to purchase organic food. The study has supported the inclusion of new constructs in the TPB as it has improved the predictive power of the proposed framework in determining consumer's intention to purchase organic food.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.appet.2015.09.017 | DOI Listing |
One Health
June 2025
Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Soil Science, Faculty of Agriculture/ Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria.
Population growth has led to excessive land use, affecting soil suitability and sustainability. Detailed soil characterization and land evaluation for various land uses are essential steps toward achieving food security and sustaining the environment. This study classifies soils and assesses their suitability for tomato cultivation using the FAO Land Assessment Framework and Analytical Hierarchy Process (AHP) model.
View Article and Find Full Text PDFNanoscale Adv
January 2025
College of BioNano Technology, Gachon University Gyeonggi 13120 Republic of Korea
Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.
Nanoporous solids offer a wide range of functionalities for industrial, environmental, and energy applications. However, only a limited number of porous materials are responsive, the nanopore dynamically alters its size and shape in response to external stimuli such as temperature, pressure, light or the presence of specific molecular stimuli adsorbed inside the voids deforming the framework. Adsorption-induced structural deformation of porous solids can result in unique counterintuitive phenomena.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!