The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651080 | PMC |
http://dx.doi.org/10.1128/AEM.02832-15 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
Some yellow-colored market classes of dry bean ( L.) are valued by consumers as an easy-to-digest, fast cooking alternative to darker colored red and black beans, which in comparison generally have longer cooking times and reduced iron bioavailability. There is evidence that the cooking time of yellow beans is linked to the dietary fiber content and may also contribute to nutrient digestibility and bioavailability.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Lab Services and Infection Control; Chief, Education and Research, Artemis Hospitals, Sector-51, Gurugram, Haryana, India.
Klebsiella pneumoniae, a pathogen of concern worldwide can be classified as classical K. pneumoniae (cKp) and Hypervirulent K. pneumoniae (HvKp).
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:
Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.
View Article and Find Full Text PDFChemosphere
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China. Electronic address:
Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!