The performances of ordered mesoporous carbon CMK-3 (OMC), bamboo-based carbon (BC), and these two kinds of adsorbents modified by thermal treatment in the ammonia atmosphere at high temperatures were evaluated for the removal fluoroquinolone antibiotic (ciprofloxacin) from aqueous solution. The adsorption behavior of ciprofloxacin (CIP) onto OMC and BC including adsorption isotherms and kinetics were investigated. The effect of various factors (pH, ionic strength and temperature) on the adsorption process was also investigated. The results demonstrated that the modified OMC and BC can further enhance the adsorption capacity due to introduce of alkaline nitrogen functionalities on the carbon surface. And their maximum adsorption capacity reached as high as 233.37mgg(-1) and 362.94mgg(-1) under the same experimental conditions, respectively. This is primarily ascribed to the positive effect of the surface basicity. The highest sorption was observed at the lowest solubility, which indicated that hydrophobic interaction was the dominant sorption mechanism for CIP uptake onto the four adsorbents. The adsorption data of antibiotics was analyzed by Langmuir and Freundlich model, and the better correlation was achieved by the Langmuir isotherm. The kinetic data showed that the adsorption of CIP onto OMC and BC follow closely the pseudo-second order model. The removal efficiency and adsorption capacity increased with increasing temperature. The results of thermodynamic study indicated that the adsorption process was a spontaneous and endothermic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2015.08.050DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
12
adsorption
10
adsorption behavior
8
ciprofloxacin aqueous
8
aqueous solution
8
ordered mesoporous
8
mesoporous carbon
8
bamboo-based carbon
8
cip omc
8
adsorption process
8

Similar Publications

N skeleton-regulated cobalt phthalocyanine promotes polysulfide adsorption and redox kinetics.

Chem Commun (Camb)

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton Alberta T6G 2 M9, Canada.

An N skeleton substituent on cobalt phthalocyanine (CoPc) was meticulously studied to redistribute the charge in phthalocyanine, improve the mass diffusion, and promote the redox kinetics of polysulfides (LiPS), resulting in a significant ultra-low capacity decay of 0.11% at 5C over 500 cycles.

View Article and Find Full Text PDF

Amorphous-dominated magnesium oxide hollow spheres (A-MgO) were prepared using a spray-drying method in this study. These hollow spheres exhibited excellent sphericity, large specific surface areas, and abundant porosity. A-MgO exhibited outstanding fluoride adsorption properties, with a maximum adsorption capacity of 260.

View Article and Find Full Text PDF

In this study, the degradation behavior of poly(lactic acid) nanocomposite films (PLA/Hec-g@PS) under extreme natural environments was investigated, and the degraded PLA based films were applied to adsorb Cu(II). During the early and midstages of degradation, the surface roughness and crack propagation rate of PLA/Hec-g@PS films were significantly lower than those of PLA films. This could be due to the fact that Hec-g@PS enhanced the interaction forces between C-O-C + CH and C═O in the PLA chains, thereby mitigating the degradation of PLA.

View Article and Find Full Text PDF

Quaternized FeO@chitosan nanoparticles for efficient and selective isolation of heparin.

Int J Biol Macromol

December 2024

School of Chemistry and Chemical Engineering, Hunan Provincial Engineering Research Center for Functional Membranes, Hunan University of Science and Technology, Xiangtan 411201, China.

Heparin, a highly sulfated polysaccharide, is industrially produced for clinical applications. To realize highly efficient and selective adsorption of heparin from complex biological components (e.g.

View Article and Find Full Text PDF

Banana peels-derived shape-regulated nanocellulose for effective adsorption of Nile blue A dye.

Int J Biol Macromol

December 2024

School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:

Industrial wastes, including dyes and other chemicals, are significant sources of water pollution. The adsorption process is often explored in water purification. However, developing low-cost, sustainable adsorbents with good dye removal capacity remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!