To date, the successful application of large scale ultrasound in water treatment has been a challenge. Magnetostrictive ultrasound technologies for constructing a large-scale water treatment system are proposed in this study. Comprehensive energy evaluation of the proposed system was conducted. The effects of chosen waveform, scalability and reactor design on the performance of the system were explored using chemical dosimetry. Of the fundamental waveforms tested; sine, triangle and square, the highest chemical yield resulted from the square wave source. Scaling up from the 0.5L bench-scale system to the 15 L large-scale unit resulted in a gain of approximately 50% in sonochemical efficiency (SE) for the system. The use of a reactor tank with 45° inclined sides further increased SE of the system by 70%. The ability of the large scale system in removing contaminants from natural water samples was also investigated. The results revealed that the large-scale unit was capable of achieving a maximum removal of microbes and dissolved organic carbon (DOC) of 35% and 5.7% respectively at a power density approximately 3.9 W/L. The results of this study suggest that magnetostrictive ultrasound technology excited with square wave has the potential to be competitive in the water treatment industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2015.08.013 | DOI Listing |
PLoS One
January 2025
Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.
Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
Purifying methane from natural gas using adsorbents not only requires the adsorbents to possess excellent separation performance but also to overcome additional daunting challenges such as humidity interference and durability requirements for sustainable use. Herein, porous organic crystals of a new macrocycle () with superhydrophobic and self-healing features are prepared and employed for the purification of methane (>99.99% purity) from ternary methane/ethane/propane mixtures under 97% relative humidity.
View Article and Find Full Text PDFClin Exp Nephrol
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, 4000 Reservoir Rd NW, Washington, DC, 20007, USA.
This review article series on water and electrolyte disorders is based on the 'Electrolyte Winter Seminar' held annually for young nephrologists in Japan. The seminar features dynamic case-based discussions, some of which are included as self-assessment questions in this series. The second article in this series focuses on treatment of hyponatremia, a common water and electrolyte disorder frequently encountered in clinical practice.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Botany, Bacha Khan University, Charsadda, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!