Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We synthesized multifunctional activatible microbubbles (MAMs) for ultrasound mediated delivery of oxygen and drugs with both ultrasound and fluorescence imaging guidance. Oxygen enriched perfluorocarbon (PFC) compound was encapsulated in liposome microbubbles (MBs) by a modified emulsification process. DiI dye was loaded as a model drug. The ultrasound targeted microbubble destruction (UTMD) process was guided by both ultrasonography and fluorescence imaging modalities. The process was validated in both a dialysis membrane tube model and a porcine carotid artery model. Our experiment results show that the UTMD process effectively facilitates the controlled delivery of oxygen and drug at the disease site and that the MAM agent enables ultrasound and fluorescence imaging guidance of the UTMD process. The proposed MAM agent can be potentially used for UTMD-mediated combination therapy in hypoxic ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2015.06.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!