Unlabelled: Further strengthening of biomedical Co-Cr-Mo alloys is desired, owing to the demand for improvements to their durability in applications such as artificial hip joints, spinal rods, bone plates, and screws. Here, we present a strategy-multipass "low-strain-per-pass" thermomechanical processing-for achieving high-strength biomedical Co-Cr-Mo alloys with sufficient ductility. The process primarily consists of multipass hot deformation, which involves repeated introduction of relatively small amounts of strain to the alloy at elevated temperatures. The concept was verified by performing hot rolling of a Co-28 Cr-6 Mo-0.13N (mass%) alloy and its strengthening mechanisms were examined. Strength increased monotonically with hot-rolling reduction, eventually reaching 1,400 MPa in 0.2% proof stress, an exceptionally high value. Synchrotron X-ray diffraction (XRD) line-profile analysis revealed a drastic increase in the dislocation density with an increase in hot-rolling reduction and proposed that the significant strengthening was primarily driven by the increased dislocation density, while the contributions of grain refinement were minor. In addition, extra strengthening, which originates from contributions of planar defects (stacking faults/deformation twins), became apparent for greater hot-rolling reductions. The results obtained in this work help in reconsidering the existing strengthening strategy for the alloys, and thus, a novel feasible manufacturing route using conventional hot deformation processing, such as forging, rolling, swaging, and drawing, is realized.

Statement Of Significance: The results obtained in this work suggested a novel microstructural design concept/feasible manufacturing route of high-strength Co-Cr-Mo alloys using conventional hot deformation processing. The present strategy focuses on the strengthening due to the introduction of a high density of lattice defects rather than grain refinement using dynamic recrystallization (DRX). The hot-rolled samples obtained by our process exhibited exceptional strength, which is comparable to the highest strength reported for biomedical Co-Cr-Mo alloys. It was also found that the acceptable ductility can be obtained even in such highly distorted Co-Cr-Mo alloys. We described the strengthening mechanisms in detail; this will be helpful for further investigations or industrial realization of the proposed strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2015.09.016DOI Listing

Publication Analysis

Top Keywords

co-cr-mo alloys
20
biomedical co-cr-mo
12
hot deformation
12
strengthening
8
strengthening biomedical
8
"low-strain-per-pass" thermomechanical
8
strengthening mechanisms
8
hot-rolling reduction
8
dislocation density
8
grain refinement
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!