Background: Mesp1 is critical for early cardiomyocyte differentiation and heart development. We previously observed down-regulation of Mesp1 expression in YY1-ablated mouse embryonic hearts. However, how Mesp1 expression is mediated by YY1 is not well understood.
Results: We excised YY1 in the murine embryos using Sox2-cre and found that Mesp1 was down-regulated in the embryonic day (E) 7.5 mutant embryos. Also, YY1 activated the 6 kb Mesp1 regulatory element fused to a luciferase reporter. We identified two putative YY1 binding sites in the proximal promoter region of Mesp1 gene, and found that mutation of these sites significantly reduced YY1-induced activation of the Mesp1 promoter. We also uncovered one cognitive site for SP1, one of the earliest binding partners of YY1 identified. Mutation of this SP1 site repressed SP1-induced activation of the Mesp1 promoter. Moreover, YY1 and SP1 synergistically activated the Mesp1 promoter. Consistently, while Lacz expression driven by the wild-type 6 kb regulatory element of Mesp1 gene was robust in E7.5 mouse embryos, the mutation of these binding sites in the context of this 6 kb sequence substantially reduced the LacZ expression during embryogenesis.
Conclusions: YY1 and SP1 independently and cooperatively govern the Mesp1 expression during embryogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.24349 | DOI Listing |
Dev Growth Differ
January 2025
Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Henan Xinxiang, 453003, People's Republic of China.
To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.
View Article and Find Full Text PDFMatrix Biol Plus
December 2024
School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia.
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC).
View Article and Find Full Text PDFEur J Cell Biol
December 2024
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China. Electronic address:
Cardiac development requires precise gene expression programs at each developmental stage guided by multiple signaling pathways and transcription factors (TFs). MESP1 is transiently expressed in mesoderm, and is essential for subsequent cardiac development, while the precise mechanism regulating its own transcription and mesoderm cell fate is not fully understood. Therefore, we developed a high content screen assay to identify regulators of MESP1 expression in mesodermal cells differentiated from human pluripotent stem cells (hPSCs).
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2024
Eye Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
Choroidal atrophy is a common fundus pathological change closely related to the development of age-related macular degeneration (AMD), retinitis pigmentosa, and pathological myopia. Studies suggest that choroidal endothelial cells (CECs) that form the choriocapillaris vessels are the first cells lost in choroidal atrophy. It is found that endothelial cells derived from human pluripotent stem cells (hPSC-ECs) through the MESP1+ mesodermal progenitor stage express CECs-specific markers and can integrate into choriocapillaris.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!