It has been known for many decades that multiple abnormalities of the autonomic nervous system (ANS) are present in heart failure (HF). Moreover, many of the effective therapies currently used to treat HF have either direct or indirect effects on the ANS. While therapies that block over-activity of the sympathetic nervous system are now standard of care, much less well studied are therapies aimed at augmenting the parasympathetic nervous system. This review will cover recent and ongoing investigations targeting modulation of the ANS, especially highlighting new and ongoing studies directed toward augmenting parasympathetic mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11886-015-0652-2DOI Listing

Publication Analysis

Top Keywords

nervous system
12
heart failure
8
augmenting parasympathetic
8
autonomic modulation
4
modulation heart
4
failure ready
4
ready prime
4
prime time?
4
time? decades
4
decades multiple
4

Similar Publications

A Review of Bavachinin and Its Derivatives as Multi-therapeutic Agents.

Chem Biodivers

January 2025

Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.

Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.

View Article and Find Full Text PDF

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

Background: Myelomeningocele (MMC) is the most common type of congenital spinal malformation, typically requiring surgical intervention. While prenatal repair is increasingly favored, postnatal repair remains the standard in many settings. This study aims to evaluate the antibiotics prescribed to neonates with MMC and their correlation with central nervous system (CNS) infection rates following postnatal surgical repair.

View Article and Find Full Text PDF

Background: Changes in cardiac function and structure as well as their association with the cardiac autonomic nervous system remain incompletely characterized in children with stage 5 chronic kidney disease (CKD) receiving hemodialysis (HD).

Methods: A prospective observational cohort study was conducted on 40 Egyptian children with CKD on regular HD compared to 40 age- and sex-matched healthy children. All participants underwent thorough clinical examination, laboratory investigations, 24-h Holter monitoring, and 2D/4D echocardiographic study (conventional and advanced modalities).

View Article and Find Full Text PDF

EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!