A new type of biomimetic nanoassembly for targeted antigen delivery and enhanced Th1-type response is reported for the first time, to combat the major challenges in the treatment of infected cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cc06794d | DOI Listing |
Biomimetics (Basel)
January 2025
Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA.
Biomimetic nanoassemblies derived from natural products are considered promising nanomaterials due to their self-assembling ability and their favorable interactions with biological molecules leading to their numerous applications as therapeutic agents or as molecular probes. In this work, we have created peptide nanoconjugates of two natural products, β-Boswellic acid (BA) and β-glycyrrhetinic acid (GH). Both BA and GH are known for their medicinal value, including their role as strong antioxidants, anti-inflammatory, neuroprotective and as anti-tumor agents.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.
View Article and Find Full Text PDFSmall
February 2025
Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing University Three Gorges Hospital, Chongqing, 400044, China.
Theranostic applications in atherosclerosis plaque microenvironment-triggered nanoplatforms are significantly compromised by the complex synthesis procedure, non-specific distribution, and limited therapeutic function. Therefore, development of a facile and feasible method to construct a pathology-based stimuli-responsive nanoplatform with satisfactory theranostic performance remains a demanding and highly anticipated goal. Herein, a novel class of multifunctional supra-carbon dots (CDs), denoted as MM@Ce-CDs NPs, by a simple nanoassembly and a subsequent coating with macrophage membrane (MM), is developed for the targeted reactive oxygen species-trigged theranostic and positive regulation of the pathological plaque microenvironment in AS.
View Article and Find Full Text PDFSmall
January 2025
Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Xiping Road, Tianjin, 300130, P. R. China.
ACS Appl Mater Interfaces
November 2024
Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!