Objective: A review of the development, evaluation, and application of the so-called 'matrix sentence test' for speech intelligibility testing in a multilingual society is provided. The format allows for repeated use with the same patient in her or his native language even if the experimenter does not understand the language.
Design: Using a closed-set format, the syntactically fixed, semantically unpredictable sentences (e.g. 'Peter bought eight white ships') provide a vocabulary of 50 words (10 alternatives for each position in the sentence). The principles (i.e. construction, optimization, evaluation, and validation) for 14 different languages are reviewed. Studies of the influence of talker, language, noise, the training effect, open vs. closed conduct of the test, and the subjects' language proficiency are reported and application examples are discussed.
Results: The optimization principles result in a steep intelligibility function and a high homogeneity of the speech materials presented and test lists employed, yielding a high efficiency and excellent comparability across languages. The characteristics of speakers generally dominate the differences across languages.
Conclusion: The matrix test format with the principles outlined here is recommended for producing efficient, reliable, and comparable speech reception thresholds across different languages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14992027.2015.1020971 | DOI Listing |
J Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.
Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.
Sci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFHematol Transfus Cell Ther
November 2024
Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil. Electronic address:
Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation.
View Article and Find Full Text PDFMethods
January 2025
School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.
Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!