Background: Pathogen manipulation of host behavior can greatly impact vector-borne disease transmission, but almost no attention has been paid to how it affects disease surveillance. Bluetongue virus (BTV), transmitted by Culicoides biting midges, is a serious disease of ruminant livestock that can cause high morbidity and mortality and significant economic losses. Worldwide, the majority of surveillance for Culicoides to assess BTV transmission risk is done using UV-light traps. Here we show that field infection rates of BTV are significantly lower in midge vectors collected using traps baited with UV light versus a host cue (CO2).
Methods: We collected Culicoides sonorensis midges in suction traps baited with CO2, UV-light, or CO2 + UV on three dairies in southern California to assess differences in the resulting estimated infection rates from these collections. Pools of midges were tested for BTV by qRT-PCR, and maximum likelihood estimates of infection rate were calculated by trap. Infection rate estimates were also calculated by trapping site within a dairy. Colonized C. sonorensis were orally infected with BTV, and infection of the structures of the compound eye was examined using structured illumination microscopy.
Results: UV traps failed entirely to detect virus both early and late in the transmission season, and underestimated virus prevalence by as much as 8.5-fold. CO2 + UV traps also had significantly lower infection rates than CO2-only traps, suggesting that light may repel infected vectors. We found very high virus levels in the eyes of infected midges, possibly causing altered vision or light perception. Collecting location also greatly impacts our perception of virus activity.
Conclusions: Because the majority of global vector surveillance for bluetongue uses only light-trapping, transmission risk estimates based on these collections are likely severely understated. Where national surveillance programs exist, alternatives to light-trapping should be considered. More broadly, disseminated infections of many arboviruses include infections in vectors' eyes and nervous tissues, and this may be causing unanticipated behavioral effects. Field demonstrations of pathogen-induced changes in vector behavior are quite rare, but should be studied in more systems to accurately predict vector-borne disease transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573699 | PMC |
http://dx.doi.org/10.1186/s13071-015-1062-4 | DOI Listing |
Foodborne Pathog Dis
January 2025
Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea.
Antimicrobial-resistant bacterial contamination of meat poses a significant global public health risk. We aimed to determine antimicrobial resistance profiles and trends of recovered from carcasses of healthy food-producing animals in South Korea during 2010-2023. In total, 4748 isolates obtained from cattle ( = 1582), pigs ( = 1572), and chickens ( = 1594) were assessed for susceptibility to 12 antimicrobials.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China.
Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.
View Article and Find Full Text PDFInfect Dis Model
June 2025
School of Science, Xi'an University of Technology, Xi'an, 710048, PR China.
During epidemic outbreaks, human behavior is highly influential on the disease transmission and hence affects the course, duration and outcome of the epidemics. In order to examine the feedback effect between the dynamics of the behavioral response and disease outbreak, a simple SIR- type model is established by introducing the independent variable of effective contact rate, characterizing how human behavior interacts with disease transmission dynamics and allowing for the feedback changing over time along the progress of epidemic and population's perception of risk. By a particle swarm optimization algorithm in the solution procedures and time series of COVID-19 data with different shapes of infection peaks, we show that the proposed model, together with such behavioral change mechanism, is capable of capturing the trend of the selected data and can give rise to oscillatory prevalence of different magnitude over time, revealing how different levels of behavioral response affect the waves of infection as well as the evolution of the disease.
View Article and Find Full Text PDFFront Public Health
January 2025
Provincial Emergency Operation Center (PEOC), Government of Sindh, Karachi, Pakistan.
Introduction: Health camps are organized to provide basic health services in underprivileged communities. This study was conducted to determine community acceptance and effectiveness of health camps in the high-risk areas for the polio program in Karachi, Pakistan.
Methods: This cross-sectional survey was conducted at the health campsites in high-risk union councils (HRUCs) of four districts of Karachi, Sindh.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!