The electronic structure and phase stability of paramagnetic FeSe is computed by using a combination of ab initio methods for calculating band structure and dynamical mean-field theory. Our results reveal a topological change (Lifshitz transition) of the Fermi surface upon a moderate expansion of the lattice. The Lifshitz transition is accompanied with a sharp increase of the local moments and results in an entire reconstruction of magnetic correlations from the in-plane magnetic wave vector, (π,π) to (π,0). We attribute this behavior to a correlation-induced shift of the van Hove singularity originating from the d(xy) and d(xz)/d(yz) bands at the M point across the Fermi level. We propose that superconductivity is strongly influenced, or even induced, by a van Hove singularity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.115.106402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!