Maximum entropy and the stress distribution in soft disk packings above jamming.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.

Published: August 2015

AI Article Synopsis

  • The maximum entropy hypothesis can effectively describe stress distributions in compact clusters of particles within disordered packings of soft, frictionless disks, particularly when they are above the jamming transition.
  • In two dimensions, the analysis must include the Maxwell-Cremona force-tile area as an important factor influencing the stress distribution, alongside the stress itself.
  • Previous studies on idealized force-network ensembles also hinted at the significance of considering the force-tile area in understanding these distributions.

Article Abstract

We show that the maximum entropy hypothesis can successfully explain the distribution of stresses on compact clusters of particles within disordered mechanically stable packings of soft, isotropically stressed, frictionless disks above the jamming transition. We show that, in our two-dimensional case, it becomes necessary to consider not only the stress but also the Maxwell-Cremona force-tile area as a constraining variable that determines the stress distribution. The importance of the force-tile area had been suggested by earlier computations on an idealized force-network ensemble.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.92.022207DOI Listing

Publication Analysis

Top Keywords

maximum entropy
8
stress distribution
8
force-tile area
8
entropy stress
4
distribution soft
4
soft disk
4
disk packings
4
packings jamming
4
jamming maximum
4
entropy hypothesis
4

Similar Publications

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

Materials that are constantly driven out of thermodynamic equilibrium, such as active and living systems, typically violate the Einstein relation. This may arise from active contributions to particle fluctuations which are unrelated to the dissipative resistance of the surrounding medium. We show that in these cases the widely used relation between informatic entropy production and heat dissipation does not hold.

View Article and Find Full Text PDF

Understanding sustainability of woody species suitability zones on the Loess Plateau for optimal creation zone selection in response to future climate change.

J Environ Manage

January 2025

School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Qilaotu Mountain National Observation and Research Station of Chinese Forest Ecosystem, Chifeng, 024400, China.

Climate change has profound implications for the distribution of suitable habitats for woody species. In this study, we assessed the optimal distribution thresholds for twelve woody species on the Loess Plateau using the Maximum Entropy (MaxEnt) model, incorporating sample points of tree species alongside relevant environmental variables. We analyzed the sustainability of potentially suitable zones and proposed a framework for selecting a regulatory model to establish the most suitable creation zones in response to future climate change.

View Article and Find Full Text PDF

To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II).

View Article and Find Full Text PDF

Microstructure and Thermal Cyclic Behavior of FeNiCoAlTaB High-Entropy Alloy.

Materials (Basel)

January 2025

Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!