Particle-density fluctuations and universality in the conserved stochastic sandpile.

Phys Rev E Stat Nonlin Soft Matter Phys

Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59078-970 Natal, Rio Grande do Norte, Brazil.

Published: August 2015

We examine fluctuations in particle density in the restricted-height, conserved stochastic sandpile (CSS). In this and related models, the global particle density is a temperaturelike control parameter. Thus local fluctuations in this density correspond to disorder; if this disorder is a relevant perturbation of directed percolation (DP), then the CSS should exhibit non-DP critical behavior. We analyze the scaling of the variance Vℓ of the number of particles in regions of ℓd sites in extensive simulations of the quasistationary state in one and two dimensions. Our results, combined with a Harris-like argument for the relevance of particle-density fluctuations, strongly suggest that conserved stochastic sandpiles belong to a universality class distinct from that of DP.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.92.020104DOI Listing

Publication Analysis

Top Keywords

conserved stochastic
12
particle-density fluctuations
8
stochastic sandpile
8
particle density
8
fluctuations universality
4
universality conserved
4
sandpile examine
4
examine fluctuations
4
fluctuations particle
4
density restricted-height
4

Similar Publications

Variation and assembly mechanisms of skin and cave environmental fungal communities during hibernation periods.

Microbiol Spectr

January 2025

Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.

Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.

View Article and Find Full Text PDF

Amphibian decline and extinction have been observed on a global scale, highlighting the urgency of identifying the underlying factors. This issue has long been recognized as a critical concern in conservation ecology and continues to receive significant attention. Pathogen infection, in particular the chytrid fungus Batrachochytrium dendrobatidis, is postulated as a key factor contributing to the decline of certain species within specific regions.

View Article and Find Full Text PDF

Assembly of soil multitrophic community regulates multifunctionality via multifaceted biotic factors in subtropical ecosystems.

Environ Int

January 2025

College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China. Electronic address:

Soil biodiversity underpins multiple ecosystem functions and services essential for human well-being. Understanding the determinants of biodiversity-ecosystem function relationships (BEFr) is critical for the conservation and management of soil ecosystems. Community assembly processes determine community diversity and structure.

View Article and Find Full Text PDF

Inbreeding depression poses a severe threat to small populations, leading to the fixation of deleterious mutations and decreased survival probability. While the establishment of natural gene flow between populations is an ideal long-term solution, its practical implementation is often challenging. Reinforcement of populations by translocating individuals from larger populations is a viable strategy for reducing inbreeding, increasing genetic diversity and potentially saving populations from extinction.

View Article and Find Full Text PDF

Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!