Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595604PMC
http://dx.doi.org/10.1038/ncomms9136DOI Listing

Publication Analysis

Top Keywords

seasonal sea-ice
12
southern ocean
12
sea-ice zone
8
carbon sink
8
numerical simulations
8
glacial
6
zone glacial
4
glacial southern
4
ocean
4
ocean carbon
4

Similar Publications

Mercury (Hg) contamination poses a persistent threat to the remote Arctic ecosystem, yet the mechanisms driving the pronounced summer rebound of atmospheric gaseous elemental Hg (Hg) and its subsequent fate remain unclear due to limitations in large-scale seasonal studies. Here, we use an integrated atmosphere-land-sea-ice-ocean model to simulate Hg cycling in the Arctic comprehensively. Our results indicate that oceanic evasion is the dominant source (~80%) of the summer Hg rebound, particularly driven by seawater Hg release facilitated by seasonal ice melt (~42%), with further contributions from anthropogenic deposition and terrestrial re-emissions.

View Article and Find Full Text PDF

Assessment of nutrient storage and translocation in winter harvested Typha latifolia from free-water surface treatment wetland mitigating diffuse agricultural pollution.

Sci Total Environ

January 2025

Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Environmental Science, Policy and Management, University of California at Berkeley, USA.

Wetland macrophytes play a critical role in the performance of treatment wetlands (TWs), primarily through nutrient uptake. However, this retention is temporary, as nutrients are released back into the water upon the decomposition of plant litter. The removal of stored nutrients from TWs can be efficiently achieved by harvesting plants during the peak of the growing season, albeit with significant ecological disturbance.

View Article and Find Full Text PDF

Iceberg calving is a major contributor to Greenland's ice mass loss. Ice mélange, tightly packed sea ice and icebergs, has been hypothesized to buttress the calving fronts. However, quantifying the mélange buttressing force from field observations remains a challenge.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Cyanobacteria in winter: Seasonal dynamics of harmful algal blooms and their driving factors in boreal lakes.

Heliyon

December 2024

Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.

Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!