Adding a lens Improves spinning speed characterization.

Solid State Nucl Magn Reson

West Virginia University, Morgantown, WV 26506, United States. Electronic address:

Published: November 2015

Highly stable sample rotation is important in many solid-state NMR experiments. Whether the necessary stability is achieved is not always clear. Typically only an average frequency over some time interval (often relatively long and unknown) is available from the spinning speed controller readout, which is not representative of the short-term variations of instantaneous rotation frequency. The necessity of the relatively slow measurement of spinning speed is a consequence of phase noise in the tachometer, which prevents speed measurement to be both rapid and precise at the same time. We show that adding a lens to the tachometer, without any other changes in the probe, reduces phase noise by nearly an order of magnitude and allows improved measurement of the spinning speed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ssnmr.2015.09.004DOI Listing

Publication Analysis

Top Keywords

spinning speed
16
adding lens
8
measurement spinning
8
phase noise
8
speed
5
lens improves
4
spinning
4
improves spinning
4
speed characterization
4
characterization highly
4

Similar Publications

Spinning coding masks, recognized for their fast modulation rate and cost-effectiveness, are now often used in real-time single-pixel imaging (SPI). However, in the photon-counting regime, they encounter difficulties in synchronization between the coding mask patterns and the photon detector, unlike digital micromirror devices. To address this issue, we propose a scheme that assumes a constant disk rotation speed throughout each cycle and models photon detection as a non-homogeneous Poisson process (NHPP).

View Article and Find Full Text PDF

Experimental investigation on modes of spray formation, droplet size and size distribution in a spinning disc atomizer.

Front Plant Sci

December 2024

Key Laboratory of Plant Protection Equipment, Ministry of Agriculture and Rural Affairs, Jiangsu University, Zhenjiang, China.

The spinning disc atomizer is extensively utilized in agricultural spraying, with optimized operating conditions significantly enhancing atomization performance. In this paper, the atomization characteristics of a spinning disc were studied using photographs taken by a high-speed camera. Ethanol-water solutions were used at various flow rates and the disc speed was varied in a wide range.

View Article and Find Full Text PDF

Assessing the efficacy of the Plasma Spinning Disc Reactor (PSDR) in treating undiluted Aqueous Film Forming Foams (AFFFs).

J Hazard Mater

December 2024

Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, NY 13699, USA. Electronic address:

This work used pulsed electrical discharge plasma to treat undiluted Aqueous Film Forming Foam (AFFF) solution that contained significant quantities of per- and polyfluoroalkyl substances (PFAS). The plasma was generated within a plasma spinning disc reactor (PSDR), which utilizes the electric breakdown of argon gas to create plasma over a thin liquid film generated on a spinning disc. The PSDR performance toward degradation of AFFF constituents such as fluorotelomers, perfluorinated C-C alkyl acids, and unidentified precursors was investigated.

View Article and Find Full Text PDF

Spintronics based on ferromagnets has enabled the development of microwave oscillators and diodes. To achieve even faster operation, antiferromagnets hold great promise despite their challenging manipulation. So far, controlling antiferromagnetic order with microwave currents remains elusive.

View Article and Find Full Text PDF

Micro-Nanofiber Three-Dimensional Antibacterial Sponge with Wetting/Pore Dual Gradient for Rapid Liquid Infiltration and Uniform Retention in Diapers.

ACS Appl Mater Interfaces

November 2024

International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China.

Article Synopsis
  • * A new three-dimensional network structure was created using solution blow spinning, incorporating superabsorbent fibers and nanofibers designed for rapid liquid absorption and uniform retention.
  • * The new design led to significant improvements, including faster liquid infiltration, much higher absorption rates (up to 46.1 times better), and an impressive antibacterial effect exceeding 99.99%, without affecting skin contact.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!