Cyclohexanone, a model compound chosen to conveniently represent small oxygenates present in the aqueous phase of biomass hydrothermal upgrading streams, was hydrogenated in the presence of electrodeposited iron(0) using aqueous formic or sulfuric acid as a hydrogen donor. Under these conditions, zero-valent iron is consumed stoichiometrically and serves as both a formic acid decomposition site and a hydrogen transfer agent. However, the resulting iron(II) can be used to continuously regenerate iron(0) when a potential is applied to the glassy carbon working electrode. Controlled potential electrolysis experiments show a 17% conversion of cyclohexanone (over 1000 seconds) to cyclohexanol with >80% efficiency of iron deposition from an iron(II) sulfate solution containing formic or sulfuric acid. In the absence of electrodeposited iron, formation of cyclohexanol could not be detected.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201500624DOI Listing

Publication Analysis

Top Keywords

formic sulfuric
8
sulfuric acid
8
changing action
4
iron
4
action iron
4
iron stoichiometric
4
stoichiometric electrocatalytic
4
electrocatalytic hydrogenation
4
hydrogenation ketones
4
ketones aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!