Charge transfer between carbon nanotubes on surfaces.

Nanoscale

Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Published: October 2015

The charge transfer between neighboring single-walled carbon nanotubes (SWNTs) on a silicon oxide surface was investigated as a function of both the SWNT nature (metallic or semiconducting) and the anode/cathode distance using scanning probe techniques. Two main mechanisms were observed: a direct electron tunneling described by the typical Fowler-Nordheim model, and indirect electron transfer (hopping) mediated by functional groups on the supporting surface. Both mechanisms depend on the SWNT nature and on the anode/cathode separation: direct electron tunneling dominates the charge transfer process for metallic SWNTs, especially for large distances, while both mechanisms compete with each other for semiconducting SWNTs, prevailing one over the other depending on the anode/cathode separation. These mechanisms may significantly influence the design and operation of SWNT-based electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr03547cDOI Listing

Publication Analysis

Top Keywords

charge transfer
12
carbon nanotubes
8
swnt nature
8
direct electron
8
electron tunneling
8
anode/cathode separation
8
transfer carbon
4
nanotubes surfaces
4
surfaces charge
4
transfer neighboring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!