Endogenous hydrogen polysulfides (H2Sn; n>1) have been recognized as important regulators in sulfur-related redox biology. H2Sn can activate tumor suppressors, ion channels, and transcription factors with higher potency than H2S. Although H2Sn are drawing increasing attention, their exact mechanisms of action are still poorly understood. A major hurdle in this field is the lack of reliable and convenient methods for H2Sn detection. Herein we report a H2Sn-mediated benzodithiolone formation under mild conditions. This method takes advantage of the unique dual reactivity of H2Sn as both a nucleophile and an electrophile. Based on this reaction, three fluorescent probes (PSP-1, PSP-2, and PSP-3) were synthesized and evaluated. Among the probes prepared, PSP-3 showed a desirable off/on fluorescence response to H2Sn and high specificity. The probe was successfully applied in visualizing intracellular H2Sn.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715616 | PMC |
http://dx.doi.org/10.1002/anie.201506887 | DOI Listing |
J Oleo Sci
January 2025
Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology.
Coelomic fluid of earthworms is a valuable source of novel bioactive compounds with therapeutic applications. To gain insight into the bioactive compounds in the coelomic fluid, this study used Perionyx excavatus, a tropical earthworm distinguished for its remarkable ability for regeneration. This study aimed to identify fluorescent bioactive compounds in the coelomic fluid of P.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:
Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, University of California San Diego, La Jolla, CA, USA.
Background: Gastric cancer poses a major diagnostic and therapeutic challenge. Improved visualization of tumor margins and lymph node metastases with tumor-specific fluorescent markers could improve outcomes.
Methods: To establish orthotopic models of gastric cancer, one million cells of the human gastric cancer cell line, MKN45, were suspended in 50 μl of equal parts PBS and Matrigel and injected into the nude mouse stomach with a 29-gauge needle.
Chem Commun (Camb)
January 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei, China.
Polarity-sensitive probes (PAS) were synthesized through the attachment of azetidine and sulfonyl substituents to the pyrene fluorescent core. The emission peaks and fluorescence lifetimes of these PAS probes exhibit high sensitivity to polarity, enabling the visualization of microenvironmental characteristics and dynamics across multiple organelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!