A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxia Differentially Regulates Arterial and Venous Smooth Muscle Cell Migration. | LitMetric

Hypoxia Differentially Regulates Arterial and Venous Smooth Muscle Cell Migration.

PLoS One

Department of Surgery, University of Minnesota, Minneapolis, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, United States of America.

Published: May 2016

Objective: Intimal hyperplasia (IH) is a clinical concern leading to failure of up to 50% of vein grafts and 10% of arterial grafts after 10 years with no known current treatment. Recent studies have shown that hypoxia differentially regulates proliferation of vein derived smooth muscle cells (V-SMC) compared to artery derived smooth muscle cells (A-SMC). The objective of this study is to evaluate the effect of hypoxia on cellular migration and the mechanisms underlying the differential effects of hypoxia on A-SMC and V-SMC migration.

Methods And Results: Hypoxic treatment (3-5% O2) of Smooth Muscle Cells (SMC) resulted in differential migration in scratch wound and electric cell substrate impedance sensing (ECIS) assays. Hypoxia led to greater migration compared to normoxia with venous derived wound closure (V-SMC 30.8% Normoxia to 67% Hypoxia) greater than arterial wound closure (A-SMC 6.2% Normoxia to 24.7% Hypoxia). Paracrine factors secreted by hypoxic endothelial cells induced more migration in SMC compared to factors secreted by normoxic endothelial cells. Migration of V-SMC was greater than A-SMC in the presence of paracrine factors. Neutralizing antibody to Vascular Endothelial Growth Factor Receptor -1 (VEGFR-1) completely inhibited V-SMC migration while there was only partial inhibition of A-SMC migration. A-SMC migration was completely inhibited by Platelet Derived Growth Factor BB (PDGF-BB) neutralizing antibody. p38 Mitogen Activated Protein kinase (p38 MAPK) inhibitor pre-incubation completely inhibited migration induced by paracrine factors in both A-SMC and V-SMC.

Conclusion: Our study determines that SMC migration under hypoxia occurs via both an autocrine and paracrine mechanism and is dependent on Vascular Endothelial Growth Factor-A (VEGF-A) in V-SMC and PDGF-BB in A-SMC. Migration of both A-SMC and V-SMC is inhibited by p38 MAPK inhibitor. These studies suggest that pharmacotherapeutic strategies directed at modulating p38 MAPK activity can be exploited to prevent IH in vascular grafts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575051PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138587PLOS

Publication Analysis

Top Keywords

smooth muscle
16
migration
12
muscle cells
12
paracrine factors
12
completely inhibited
12
a-smc migration
12
p38 mapk
12
a-smc
9
hypoxia
8
hypoxia differentially
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!