A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy. | LitMetric

Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy.

Micron

Instytut Technologii Elektronowej - ITE Warsaw, Division of Silicon Microsystem and Nanostructure Technology, al. Lotników 32/46, PL-02668 Warsaw, Poland.

Published: December 2015

The use of scanning thermal microscopy (SThM) and Kelvin probe force microscopy (KPFM) to investigate silicon nanowires (SiNWs) is presented. SThM allows imaging of temperature distribution at the nanoscale, while KPFM images the potential distribution with AFM-related ultra-high spatial resolution. Both techniques are therefore suitable for imaging the resistance distribution. We show results of experimental examination of dual channel n-type SiNWs with channel width of 100 nm, while the channel was open and current was flowing through the SiNW. To investigate the carrier distribution in the SiNWs we performed SThM and KPFM scans. The SThM results showed non-symmetrical temperature distribution along the SiNWs with temperature maximum shifted towards the contact of higher potential. These results corresponded to those expressed by the distribution of potential gradient along the SiNWs, obtained using the KPFM method. Consequently, non-uniform distribution of resistance was shown, being a result of non-uniform carrier density distribution in the structure and showing the pinch-off effect. Last but not least, the results were also compared with results of finite-element method modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2015.08.004DOI Listing

Publication Analysis

Top Keywords

distribution
9
carrier density
8
density distribution
8
silicon nanowires
8
scanning thermal
8
thermal microscopy
8
kelvin probe
8
probe force
8
force microscopy
8
temperature distribution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!