Omeprazole (Prilosec®) is a selective and irreversible proton pump inhibitor used to treat various medical conditions related to the production of excess stomach acids. It functions by suppressing secretion of those acids. Radiolabeled compounds are commonly employed in the drug discovery and development process to support efforts including library screening, target identification, receptor binding, assay development and validation and safety assessment. Herein, we describe synthetic approaches to the controlled and selective labeling of omeprazole with tritium via hydrogen isotope exchange chemistry. The chemistry may also be used to prepare tritium labeled esomeprazole (Nexium®), the active pure (S)-enantiomer of omeprazole.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jlcr.3346 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.
Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ulsan National Institute of Science and Technology, Department of Chemistry, UNIST GIL 50, 44919, Ulsan, KOREA, REPUBLIC OF.
Efficient separation of hydrogen isotopes, especially deuterium (D2), is pivotal for advancing industries such as nuclear fusion, semiconductor processing, and metabolic imaging. Current technologies, including cryogenic distillation and Girdler sulfide processes, suffer from significant limitations in selectivity and cost-effectiveness. Herein, we introduce a novel approach utilizing an imidazolium-based Metal-Organic Framework (MOF), JCM-1, designed to enhance D2/H2 separation through temperature-dependent gate-opening controlled by ion exchange.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, 0179, Tbilisi, Georgia. Electronic address:
Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:
Reductions in polycyclic aromatic hydrocarbon (PAH) concentrations have been observed during frying. However, transformation mechanisms of PAHs remain unclear. We hypothesize that PAHs may be oxidized into oxygenated polycyclic aromatic hydrocarbons (OPAHs) and other derivatives during frying.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!