Unlabelled: Recently, we reported on a series of short amphipathic α-helical peptides, comprising the backbone sequence (LLKK)2, with the ability to kill susceptible and drug-resistant Mycobacterium tuberculosis. In this study, the effect of key physicochemical parameters including hydrophobicity and helicity of α-helical peptides on anti-mycobacterial activity and synergism with rifampicin was investigated. The most hydrophobic analogue, W(LLKK)2W, displayed low selectivity against mycobacteria while peptides with intermediate hydrophobicity were shown to be equally active, yet significantly less toxic. Furthermore, proline substitution impeded the formation of stable amphipathic structures, rendering P(LLKK)2P as one of the least active analogues. Terminal capping with isoleucine was found to promote α-helical folding and the resultant peptide demonstrated the highest selectivity and minimal cytotoxicity against mammalian macrophages. Flow cytometric analysis revealed that enhancements in hydrophobicity and α-helicity increased the rate and extent of peptide-mediated membrane permeabilization. This finding corroborated the hypothesis that synergism between the peptides and rifampicin was likely mediated via peptide-induced pore formation. The rapid, concentration-dependent membrane depolarization, leakage of intracellular ATP and calcein release from PE/PG LUVs supported the membrane-lytic mechanism of action of the peptides. Together, these findings suggest that hydrophobicity and α-helicity significantly impact anti-mycobacterial activity and optimization of both parameters is necessary to develop synthetic analogues with superior selectivity indices and enhanced synergistic potential with conventional antibiotics.
Statement Of Significance: There is an urgent clinical need for the discovery of new antimicrobials, effective not just for drug susceptible, but also rapidly emerging drug-resistant TB. Recently, we reported on a series of short amphipathic α-helical peptides, comprising the backbone sequence (LLKK)2, with the ability to kill susceptible and drug-resistant M. tuberculosis. In this study, we evaluated a series of synthetic α-helical (LLKK)2 peptides over a range of hydrophobicities for their activity against mycobacteria and provide the first report on the modulating effect of hydrophobicity and α-helicity on the antimicrobial mechanisms of synthetic AMPs and their synergism with first-line antibiotics. These findings demonstrate the applicability of strategies employed here for the rational design of AMPs with the aim of improving cell selectivity and synergistic interactions when co-administered with first-line antibiotics in the fight against drug-resistant tuberculosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2015.09.015 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.
View Article and Find Full Text PDFNeurol Ther
January 2025
Clinical Pharmacology, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA.
Introduction: Atogepant is a calcitonin gene-related peptide receptor antagonist approved for the preventive treatment of migraine in adults in the USA, EU, and several other countries. The objectives of this study were to evaluate the pharmacokinetics (PK) and dose proportionality of atogepant in healthy Japanese participants, evaluate the safety and tolerability of atogepant in Japanese participants, and explore the differences in the PK and safety of atogepant in Japanese vs white participants.
Methods: A total of 50 participants (40 Japanese and 10 white) were enrolled into five cohorts; Japanese cohorts were randomized in a 4:1 ratio to atogepant (10 mg, 30 mg, or 60 mg daily dosing and 60 mg twice daily) or placebo.
Cardiooncology
January 2025
ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Oslo, Norway.
Background: Although anthracycline-related cardiotoxicity is widely studied, only a limited number of echocardiographic studies have assessed cardiac function in breast cancer survivors (BCSs) beyond ten years from anthracycline treatment, and the knowledge of long-term cardiorespiratory fitness (CRF) in this population is scarce. This study aimed to compare CRF assessed as peak oxygen uptake (V̇O), cardiac morphology and function, and cardiovascular (CV) risk factors between long-term BCSs treated with anthracyclines and controls with no history of cancer.
Methods: The CAUSE (Cardiovascular Survivors Exercise) trial included 140 BCSs recruited through the Cancer Registry of Norway, who were diagnosed with breast cancer stage II to III between 2008 and 2012 and had received treatment with epirubicin, and 69 similarly aged activity level-matched controls.
Chin Med
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
Purpose: We sought to investigate the expression of MALAT1, plasma brain natriuretic peptide, and Tei index in sepsis-induced myocardial injury.
Methods: The current retrospective analysis focused on 146 sepsis patients admitted to our hospital from February 2021 to March 2023. Based on the presence or absence of myocardial injury, the patients were divided into two groups: the sepsis group (n = 80) and the sepsis-induced myocardial injury group (n = 66).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!