Ocean iron fertilization is an approach to increase CO2 sequestration. The Indo-German iron fertilization experiment "LOHAFEX" was carried out in the Southern Ocean surrounding Antarctica in 2009 to monitor changes in bacterial community structure following iron fertilization-induced phytoplankton bloom of the seawater from different depths. 16S rRNA gene libraries were constructed using metagenomic DNA from seawater prior to and after iron fertilization and the clones were sequenced for identification of the major bacterial groups present and for phylogenetic analyses. A total of 4439 clones of 16S rRNA genes from ten 16S rRNA gene libraries were sequenced. More than 97.35% of the sequences represented four bacterial lineages i.e. Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Firmicutes and confirmed their role in scavenging of phytoplankton blooms induced following iron fertilization. The present study demonstrates the response of Firmicutes due to Iron fertilization which was not observed in previous southern ocean Iron fertilization studies. In addition, this study identifies three unique phylogenetic clusters LOHAFEX Cluster 1 (affiliated to Bacteroidetes), 2, and 3 (affiliated to Firmicutes) which were not detected in any of the earlier studies on iron fertilization. The relative abundance of these clusters in response to iron fertilization was different. The increase in abundance of LOHAFEX Cluster 2 and Papillibacter sp. another dominant Firmicutes may imply a role in phytoplankton degradation. Disappearance of LOHAFEX Cluster 3 and other bacterial genera after iron fertilization may imply conditions not conducive for their survival. It is hypothesized that heterotrophic bacterial abundance in the Southern Ocean would depend on their ability to utilize algal exudates, decaying algal biomass and other nutrients thus resulting in a dynamic bacterial succession of distinct genera.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550105PMC
http://dx.doi.org/10.3389/fmicb.2015.00863DOI Listing

Publication Analysis

Top Keywords

iron fertilization
40
southern ocean
16
16s rrna
12
lohafex cluster
12
iron
11
fertilization
10
ocean iron
8
rrna gene
8
gene libraries
8
bacterial
6

Similar Publications

Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks.

Sci Adv

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.

View Article and Find Full Text PDF

Agricultural amendments enhanced the redox cycling of iron species and hydroxyl radical formation during redox fluctuation of paddy soil.

J Hazard Mater

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:

Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.

View Article and Find Full Text PDF

Drought adversely affects the growth and performance of plants. By contrast, the application of organic modifiers can improve plant growth by supplying nutrients and water. The influence of foliar application of organic fertilizer under water deficit conditions on growth traits, chemical composition, and fruit quality of tomato (Lycopersicon esculentum Mill.

View Article and Find Full Text PDF

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.

View Article and Find Full Text PDF

This study investigates the production and nutritional quality of cv. Mombasa grass under varying levels of water stress and nitrogen (N) fertilization, aiming to enhance forage production in harsh environments. Four irrigation levels (5760, 6912, 4608, and 3456 m ha year) and three N fertilizer doses (115, 57.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!