Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC) motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET) microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A (Sema3A) stimulation obtained with lipid vesicles filled with Sema3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Sema3A brought to a progressive activation of RhoA within 30 s from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 s, and followed by GC retraction. Therefore, Sema3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549648 | PMC |
http://dx.doi.org/10.3389/fncel.2015.00333 | DOI Listing |
Brain Sci
December 2024
Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death.
View Article and Find Full Text PDFTheriogenology
March 2025
College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun, 130118, China. Electronic address:
Wanxi white goose is an important male parent in crossbreeding of Chinese geese, but its short reproductive cycle restricts its application in Northeast China. Therefore, understanding the potential mechanism of breeding period regulation in Wanxi white goose will help to provide more options for crossbreeding. In this study, the reproductive period was divided into prophase (T1), metaphase (T2) and anaphase (T3) according to the laying rhythm of geese.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China. Electronic address:
The role of immune cells is crucial in nerve regeneration following spinal cord injury. Kif15, a member of the kinesin family, has been shown to enhance macrophage phagocytosis. This study investigates the impact of Kif15 deficiency on immune cells in zebrafish with spinal cord injury.
View Article and Find Full Text PDFTransl Androl Urol
November 2024
Department of Urology, Second People's Hospital of China Three Gorges University, Yichang, China.
Background And Objective: Prostate cancer is a major cause of cancer-related morbidity and mortality in men globally. The pathogenesis involves complex interactions between genetic mutations and environmental factors, activating multiple signaling pathways, especially Wnt/β-catenin, PI3K/Akt, and NF-κB pathways. Tumor suppressor genes and are key inhibitors of these pathways, crucial in suppressing tumor growth and metastasis.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2024
Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Tubulogenesis depends on precise cell shape changes driven by asymmetric tension from the actin cytoskeleton. How actin asymmetry is dynamically controlled to coordinate epithelial cell shape changes required for respiratory tubulogenesis remains unknown. Herein, we unveiled a critical role for the transcription factor KLF5, regulating actin asymmetry, inducing epithelial cell shape changes by balancing RHOA and CDC42 GTPase activity via RICH2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!