Somatosensory mu activity reflects imagined pain intensity of others.

Psychophysiology

Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany.

Published: December 2015

In accordance with simulation theories of empathy, the somatosensory cortex is involved in the perception of pain of others. Cognitive processes, like perspective taking, can alter empathy-related activity within the somatosensory cortex. The current study investigates whether this modulation is caused by the imagined sensation of pain or by the cognitive load of a perspective-taking task. Applying a within-subject design, participants (N = 30) watched pictures of painful and nonpainful actions, while imagining reduced, normal, or increased pain perception of the observed individual. Mu activity (8-13 Hz), which is inversely correlated with sensorimotor-cortex activity, was measured via EEG. To calculate mu activity (central electrodes) and alpha activity (occipital electrodes), which served as a control for effects of cognitive load, a fast Fourier transform was applied. Mu suppression linearly increased from reduced to normal to increased imagined pain (p < .05), while alpha activity was unaffected by the imagined pain (p > .80). Suppression of the 8-13 Hz band at central and occipital electrodes was stronger in response to painful actions compared to nonpainful actions (p < .01). These results indicate that modulation of mu activity through perspective taking reflects the imagined pain intensity and not the cognitive load induced by the task.

Download full-text PDF

Source
http://dx.doi.org/10.1111/psyp.12522DOI Listing

Publication Analysis

Top Keywords

imagined pain
8
somatosensory cortex
8
pain cognitive
8
cognitive load
8
nonpainful actions
8
reduced normal
8
normal increased
8
occipital electrodes
8
pain
5
activity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!