NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt02724a | DOI Listing |
Nano Lett
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
Robust interfaces in anodes play a crucial role in boosting sodium-ion battery (SIB) performance. However, the fragile interfaces constructed by a two-step synthesis or artificial stack are prone to be destroyed during the charging/discharging processes, which significantly reduces the lifetime of SIBs. Here, a facile construction strategy is developed to produce robust interfaces in hollow sphere-like CoSe/nitrogen-doped carbon (HS-CoSe/NC) using intrinsic Co, N, C in metal-organic framework as precursors, which enhance the electron/ion diffusion kinetics.
View Article and Find Full Text PDFLangmuir
January 2025
College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, P. R. China.
In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, P.R. China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, P.R. China. Electronic address:
The recovery of precious metal ions (PMI) from wastewater has great significances from both economic and environmental perspectives. However, current recovery methods face limitations, including low efficiency and selectivity, as well as challenges in practical applications. In this study, hollow N-doped carbon spheres (HNC) are proved to be promising for improving anionic AuCl and PdCl recovery via the curvature effect, outperforming non-curved carbon (commercial active carbon and carbon nanosheet) due to their unique curvature effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 China.
The dry reforming of methane (DRM) could convert CH and CO into syngas, offering potential for greenhouse gas mitigation. However, DRM catalyst sintering and carbon deposition remain major obstacles. In this study, a highly dispersed PtNi alloy@Zr-doped 3D hollow flower-like MgAlO (AMO) spheres was prepared through a hydrophobic driving strategy.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2025
Dpt. Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
The enzyme-catalyzed synthesis of calcium phosphate is a promising method for producing calcium-based nanomaterials for biomedical applications. The purpose of this work was to determine the type of phosphate that forms when alkaline phosphatase catalyzes the reaction, and to identify the role of natural biopolymers in calcium phosphate formation. In this research, we analyzed calcium phosphates that were synthesized in the presence of alkaline phosphatase from either E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!