Preventive Role of Tetraspanin CD9 in Systemic Inflammation of Chronic Obstructive Pulmonary Disease.

Am J Respir Cell Mol Biol

2 Department of Medicine, Nissay Hospital, Nippon Life Saiseikai Public Interest Incorporated Foundation, Nishi-ku, Osaka, Japan.

Published: December 2015

Chronic obstructive pulmonary disease (COPD) is frequently associated with extrapulmonary complications, including cardiovascular disease, diabetes, and osteoporosis. Persistent, low-grade, systemic inflammation underlies these comorbid disorders. Tetraspanins, which have a characteristic structure spanning the membrane four times, facilitate lateral organization of molecular complexes and thereby form tetraspanin-enriched microdomains that are distinct from lipid rafts. Recent basic research has suggested a preventive role of tetraspanin CD9 in COPD. CD9-enriched microdomains negatively regulate LPS-induced receptor formation by preventing CD14 from accumulating into the rafts, and decreased CD9 in macrophages enhances inflammation in mice. Mice doubly deficient in CD9 and a related tetraspanin, CD81, show pulmonary emphysema, weight loss, and osteopenia, a phenotype akin to human COPD. A therapeutic approach to up-regulating CD9 in macrophages might improve the clinical course of patients with COPD with comorbidities.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2015-0122TRDOI Listing

Publication Analysis

Top Keywords

preventive role
8
role tetraspanin
8
tetraspanin cd9
8
systemic inflammation
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
cd9 macrophages
8
cd9
5
cd9 systemic
4

Similar Publications

Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Background: Childhood overweight and obesity are significant global public health challenges that affect approximately 340 million children worldwide. In Georgia, the prevalence of childhood obesity is alarming, with approximately 28% of 7-year-old children classified as overweight or obese in 2019. This study aimed to investigate the key factors associated with overweight and obesity among school-age children in Georgia.

View Article and Find Full Text PDF

Background: Creativity motivated by negative intentions can be referred to as malevolent creativity. While existing findings have largely focused on environmental or individual factors influencing malevolent creativity, less attention has been directed towards understanding how the sense of place-derived from individual-environment interaction-affects malevolent creativity. Additionally, the role of coping styles as mediating mechanisms in negative environments has been insufficiently explored.

View Article and Find Full Text PDF

Upregulated astrocyte HDAC7 induces Alzheimer-like tau pathologies via deacetylating transcription factor-EB and inhibiting lysosome biogenesis.

Mol Neurodegener

January 2025

College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.

Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!