Visual Detection of Human Antibodies Using Sugar Chain-Immobilized Fluorescent Nanoparticles: Application as a Point of Care Diagnostic Tool for Guillain-Barré Syndrome.

PLoS One

Department of Chemistry, Biotechnology and Chemical Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan; SUDx-Biotec Corporation, 1-42-1 Shiroyama, Kagoshima 890-0013, Japan.

Published: May 2016

AI Article Synopsis

Article Abstract

Sugar chain binding antibodies have gained substantial attention as biomarkers due to their crucial roles in various disorders. In this study, we developed simple and quick detection method of anti-sugar chain antibodies in sera using our previously developed sugar chain-immobilized fluorescent nanoparticles (SFNPs) for the point-of-care diagnostics. Sugar chain structure on SFNPs was modified with the sugar moieties of the GM1 ganglioside via our original linker molecule to detect anti-GM1 antibodies. The structures and densities of the sugar moieties immobilized on the nanoparticles were evaluated in detail using lectins and sera containing anti-GM1 antibodies from patients with Guillain-Barré syndrome, a neurological disorder, as an example of disease involving anti-sugar chain antibodies. When optimized SFNPs were added to sera from patients with Guillain-Barré syndrome, fluorescent aggregates were able to visually detect under UV light in three hours. The sensitivity of the detection method was equivalent to that of the current ELISA method used for the diagnosis of Guillain-Barré syndrome. These results suggest that our method using SFNPs is suitable for the point-of-care diagnostics of diseases involving anti-sugar chain antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574945PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137966PLOS

Publication Analysis

Top Keywords

guillain-barré syndrome
16
anti-sugar chain
12
chain antibodies
12
sugar chain-immobilized
8
chain-immobilized fluorescent
8
fluorescent nanoparticles
8
sugar chain
8
detection method
8
point-of-care diagnostics
8
sugar moieties
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.

Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.

View Article and Find Full Text PDF

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!