A double approach was followed in the search of novel inhibitors of the surface choline-binding proteins (CBPs) of Streptococcus pneumoniae (pneumococcus) with antimicrobial properties. First, a library of 49 rationally-designed esters of alkyl amines was screened for their specific binding to CBPs. The best binders, being esters of bicyclic amines (EBAs), were then tested for their in vitro effect on pneumococcal growth and morphology. Second, the efficiency of EBA-induced CBP inhibition was enhanced about 45,000-fold by multivalency effects upon synthesizing a poly(propylene imine) dendrimer containing eight copies of an atropine derivative. Both approaches led to compounds that arrest bacterial growth, dramatically decrease cell viability, and exhibit a protection effect in animal disease models, demonstrating that the pneumococcal CBPs are adequate targets for the discovery of novel antimicrobials that overcome the currently increasing antimicrobial resistance issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201505700 | DOI Listing |
Org Biomol Chem
January 2025
Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
Simple and sustainable three- and four-step sequences of di-OH-protection/mono-OMe-deprotection/OrgRC and di-OH-protection/mono-OMe-deprotection/OrgRC/OMe-deprotection protocols were developed to construct biologically active natural products of irisoquin, irisoquin A, irisoquin D, irisoquin F, sorgoleone-364, embelin, rapanone, 5--methylembelin, 5--methylrapanone and their analogues from the commercially available 2,5-dihydroxy-1,4-benzoquinone, aliphatic aldehydes and Hantzsch ester (1,4-DHP) in very good to excellent yields by using organocatalytic reductive coupling (OrgRC) as key reaction. Many of these natural compounds exhibited a broad spectrum of biological activities including antioxidant, anti-inflammatory, anticonvulsant, anxiolytic, analgesic, anthelmintic, antitumor, antibacterial, and antifertility properties. At the same time, simple and readily available 2,5-dihydroxy-1,4-benzoquinone was transformed into a functionally rich library of 2,5-dihydroxy-3,6-dialkyl-1,4-benzoquinones in very good yields by using sequential OrgRC followed by deprotection reactions and resulting natural/unnatural products would be excellent targets for investigation to show their biological activities compared to known natural products.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
The catalytic asymmetric multicomponent acylation/rearrangement/cyclization of alkenylfurans with acyl oxime esters/arylamines or acyl oxime esters/arylamines/hydroxylamine has been developed. This method employs synergistic photoredox/Brønsted acid catalysis, enabling the efficient and versatile synthesis of multifunctionalized [3.2.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States.
Nucleophilic substitution reactions of C-2-acyloxy furanosyl acetals can be highly diastereoselective. We here show that the presence of a less electron-donating -nitrobenzoyloxy group at C-2 of a furanosyl acetal can be of use to control the 1,2- stereoselectivity of acetal substitution reactions with higher stereoselectivity than the analogue with the more electron-donating benzoyloxy group, just as what was observed in the pyranosyl system. Computational results support a reaction manifold involving both open oxocarbenium ions and -dioxolenium ions to provide the 1,2- and 1,2- products.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
Allylic diboronates are highly valuable reagents in organic synthesis. Existing methods predominantly yield alkyl-substituted allylic diboronates, while the incorporation of electrophilic carbonyl groups conjugated to these allylic systems remains unknown. We present a strain-release promoted cycloaddition-based strategy that enabled access to unprecedented carbonyl conjugated secondary allylic diborons.
View Article and Find Full Text PDFChemistry
December 2024
Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg, Germany.
A (3+3)-cycloaddition to afford 2-azabiyclo[3.1.1]heptanes was realized by reacting highly strained aryl bicyclo[1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!