Synthesis and Identification of Pregnenolone Derivatives as Inhibitors of Isozymes of 5α-Reductase.

Arch Pharm (Weinheim)

Departamento de Sistemas Biológicos y de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México, D. F., Mexico.

Published: November 2015

Hyperplasia of the prostate gland and prostate cancer have been associated with high levels of serum 5α-dihydrotestosterone. This steroid is formed from testosterone by the activity of the enzyme 5α-reductase (5α-R) present in the prostate. Thus, inhibition of this enzyme could be a goal for therapies to treat these diseases. This study reports the synthesis and effects of five different 21-esters of pregnenolone derivatives as inhibitors of 5α-R types 1 and 2. The activity of these steroidal compounds was determined using in vivo and in vitro experiments. The results indicate that of the five steroids studied, the 21(p-fluoro)benzoyloxypregna-4,16-diene-3,6,20-trione derivative, whose structure has not yet been reported, has the best molecular conformation to inhibit the in vitro activity of both types of 5α-R. In addition, this steroid also displayed activity in vivo. Apparently, its pharmacological effect was increased by the presence of a keto group at C-6, because this group decreased the possibility that the steroid would be metabolized by hepatic enzymes. In addition, the double bond present at C-4 of this compound also enhanced its inhibitory activity on 5α-R, and the C-21 ester moiety increased its liphophilicity. Therefore, its solubility in the cell membrane and its pharmacological activity were both increased.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201500220DOI Listing

Publication Analysis

Top Keywords

pregnenolone derivatives
8
derivatives inhibitors
8
activity
6
synthesis identification
4
identification pregnenolone
4
inhibitors isozymes
4
isozymes 5α-reductase
4
5α-reductase hyperplasia
4
hyperplasia prostate
4
prostate gland
4

Similar Publications

The metabolism of steroids by the gut microbiome affects hormone homeostasis, impacting host development, mental health, and reproductive functions. In this study, we identify the Δ -3-ketosteroid 5β-reductase, 3β-hydroxysteroid dehydrogenase/Δ isomerase, and Δ -3-ketosteroid reductase enzyme families encoded by common human gut bacteria. Through phylogenetic reconstruction and mutagenesis, We show that 5β-reductase and Δ -3-ketosteroid reductase have evolved to specialize in converting diverse 3-keto steroid hormones into their 5β- and Δ -reduced derivatives.

View Article and Find Full Text PDF

Altrenogest, also known as allyltrenbolone, is a synthetic form of progesterone used therapeutically to suppress unwanted symptoms of estrus in female horses. Altrenogest affects the system by decreasing levels of endogenous gonadotrophin and luteinizing and follicle-stimulating hormones, which in turn decreases estrogen and mimics the increase of progesterone production. This results in more manageable mares for training and competition alongside male horses while improving the workplace safety of riders and handlers.

View Article and Find Full Text PDF

Neurosteroids foster sedation by engaging tonic GABA-Rs within the mesopontine tegmental anesthesia area (MPTA).

Neurosci Lett

November 2024

Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

Neurosteroids are endogenous molecules with anxiolytic, anticonvulsant, sleep-promoting and sedative effects. They are biosynthesized de novo within the brain, among other tissues, and are thought to act primarily as positive allosteric modulators of high-affinity extrasynaptic GABAδ-receptors. The location of action of neurosteroids in the brain, however, remains unknown.

View Article and Find Full Text PDF

Background: We employed Mendelian randomization (MR) to investigate the causal relationship between the gut microbiota and lymphoid leukemia, further exploring the causal relationships among immune cells, lymphoid leukemia, and potential metabolic mediators.

Methods: We utilized data from the largest genome-wide association studies to date, encompassing 418 species of gut microbiota, 713 types of immune cells, and 1,400 serum metabolites as exposures. Summary statistics for lymphoid leukemia, acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL) were obtained from the FinnGen database.

View Article and Find Full Text PDF

Inhibition of human and rat placental 3β-hydroxysteroid dehydrogenases by bisphenol A analogues depends on their hydrophobicity: In silico docking analysis.

Chem Biol Interact

November 2024

Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, 325000, Zhejiang Province, China. Electronic address:

Bisphenol A (BPA) and its analogues are widely used industrial chemicals. Placental 3β-hydroxysteroid dehydrogenases (3β-HSDs) catalyse the conversion of pregnenolone to progesterone. However, the potency of BPA analogues in inhibiting 3β-HSDs activity remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!