Unlabelled: The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10-60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas.

Significance Statement: The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from the knock-in mouse expressing epitope-tagged DAT. For the first time, the fluorescence imaging analysis of DAT was combined with the immunogold labeling of DAT and quantitative electron microscopy. In contrast to numerous studies of DAT trafficking in heterologous expression systems and dissociated cultured neurons, studies in intact neurons revealed a surprisingly low amount of endocytic trafficking of DAT at steady state and after acute amphetamine treatment and suggested that non-vesicular transport could be the main mechanism establishing DAT distribution within the dopaminergic neuron.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571607PMC
http://dx.doi.org/10.1523/JNEUROSCI.1391-15.2015DOI Listing

Publication Analysis

Top Keywords

dat
18
dopamine transporter
12
plasma membrane
12
transporter dat
8
quantitative analysis
8
knock-in mouse
8
mouse expressing
8
epitope-tagged dat
8
electron microscopy
8
ha-dat acute
8

Similar Publications

Background: COVID-19 is a pandemic involving coinfection with other opportunistic microorganisms, including parasites such as Leishmania infantum. The present study aimed to determine the frequency of L. infantum infection and its role in disease and mortality among symptomatic COVID-19 patients in comparison with the non-COVID-19 control group in the endemic area of visceral leishmaniasis (VL) in Iran.

View Article and Find Full Text PDF

Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.

View Article and Find Full Text PDF

Chemistry to cognition: Therapeutic potential of (m-CF-PhSe) targeting rats' striatum dopamine proteins in amphetamine dependence.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:

Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.

View Article and Find Full Text PDF

Chemotherapy is the primary treatment option for pancreatic cancer, although nanocarrier-based drug delivery systems often struggle with multiple physiological barriers, limiting their therapeutic efficacy. Here, we developed a pH/reactive oxygen species (ROS) dual-sensitive self-adaptive nanocarrier (DAT) encapsulating camptothecin (CPT), an analog of the pancreatic chemotherapeutic drug irinotecan (CPT-11), to enhance chemotherapy outcomes in orthotopic pancreatic cancer by addressing multiple physiological barriers. The nanocarrier features a peripherally positively charged arginine (Arg) residue on DAT and is masked with an acid-labile 2,3-dimethylmaleic anhydride (DA) to improve circulation time.

View Article and Find Full Text PDF

DAT: Deep Learning-Based Acceleration-Aware Trajectory Forecasting.

J Imaging

December 2024

School of Innovation, Design and Technology (IDT), Mälardalen University, 72123 Västerås, Sweden.

As the demand for autonomous driving (AD) systems has increased, the enhancement of their safety has become critically important. A fundamental capability of AD systems is object detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which is essential for preventing potential collisions. This study introduces the Deep learning-based Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object detection and trajectory forecasting, utilizing raw sensor measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!