Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats.

Retrovirology

Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.

Published: September 2015

AI Article Synopsis

  • The study analyzed how primary human T cells respond to infection with the low passage HIV isolate HIV89.6, finding that 17% of cellular genes exhibited altered activity within 48 hours of infection.
  • Results showed a unique pattern of intron retention and suggested a novel cellular response to HIV infection, in contrast to findings from studies on transformed cell lines.
  • The research also highlighted the activation of human endogenous retroviruses (HERVs) and retrotransposons, particularly a subset of ERV-9, which may present new targets for vaccine development.

Article Abstract

Background: HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6.

Results: Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5' read-in, splicing out of HIV89.6 from the D4 donor and 3' read-through were the most common HIV89.6-host cell chimeric RNA forms.

Conclusions: Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574318PMC
http://dx.doi.org/10.1186/s12977-015-0205-1DOI Listing

Publication Analysis

Top Keywords

primary cells
12
gene activity
8
cells infected
8
intron retention
8
retention induction
8
hiv infection
8
cell lines
8
low passage
8
endogenous retroviruses
8
allowed quantification
8

Similar Publications

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Background: The oocyte retrieval is a critical step in assisted reproductive technologies, including in vitro fertilization and fertility preservation. Despite evolving techniques, the optimal aspiration pressure during retrieval remains debatable, with limited in vivo human studies. Existing studies, primarily in vitro and on animals, suggest that inappropriate aspiration pressures can impair oocyte quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!