In vivo investigations of enzymatic processes using non-invasive approaches are a long-lasting challenge. Recently, we showed that Overhauser-enhanced MRI is suitable to such a purpose. A β-phosphorylated nitroxide substrate prototype exhibiting keto-enol equilibrium upon enzymatic activity has been prepared. Upon enzymatic hydrolysis, a large variation of the phosphorus hyperfine coupling constant (Δa(P)=4 G) was observed. The enzymatic activities of several enzymes were conveniently monitored by electronic paramagnetic resonance (EPR). Using a 0.2 T MRI machine, in vitro and in vivo OMRI experiments were successfully performed, affording a 1200% enhanced MRI signal in vitro, and a 600% enhanced signal in vivo. These results highlight the enhanced imaging potential of these nitroxides upon specific enzymatic substrate-to-product conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201506267 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!