Embelin, a natural quinone found in the fruits of Embelia ribes, is commonly used in Ayurvedic home medicine for a variety of therapeutic potentials including anti-inflammation, anti-fever, anti-bacteria and anti-cancer. Molecular mechanisms of these activities and cellular targets have not been clarified to-date. We demonstrate that the embelin inhibits mortalin-p53 interactions, and activates p53 protein in tumor cells. We provide bioinformatics, molecular docking and experimental evidence to the binding affinity of embelin with mortalin and p53. Binding of embelin with mortalin/p53 abrogates their complex resulted in nuclear translocation and transcriptional activation function of p53 causing growth arrest in cancer cells. Furthermore, analyses of growth factors and metastatic signaling using antibody membrane array revealed their downregulation in embelin-treated cells. We also found that the embelin causes transcriptional attenuation of mortalin and several other proteins involved in metastatic signaling in cancer cells. Based on these molecular dynamics and experimental data, it is concluded that the anticancer activity of embelin involves targeting of mortalin, activation of p53 and inactivation of metastatic signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574062 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138192 | PLOS |
Mol Cancer Ther
January 2025
Indian Institute of Technology Madras, Madras, TN, India.
Most of the triple negative phenotype or basal-like molecular subtypes of breast cancers are associated with aggressive clinical behaviour and show poor disease prognosis. Current treatment options are constrained, emphasizing the need for novel combinatorial therapies for this particular tumor subtype. Our group has demonstrated that functionally active p21 activated kinase 1 (PAK1) exhibits significantly higher expression levels in clinical triple negative breast cancer (TNBC) samples compared to other subtypes, as well as adjacent normal tissues.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University Providence, RI 02903, USA.
Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).
View Article and Find Full Text PDFG-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.
View Article and Find Full Text PDFCells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.
View Article and Find Full Text PDFDespite recent advances, improvements to long-term survival in metastatic carcinomas, such as pancreatic or ovarian cancer, remain limited. Current therapies suppress growth-promoting biochemical signals, ablate cells expressing tumor-associated antigens, or promote adaptive immunity to tumor neoantigens. However, these approaches are limited by toxicity to normal cells using the same signaling pathways or expressing the same antigens, or by the low frequency of neoantigens in most carcinomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!