MiRNAs, a family of small non-coding RNAs, have emerged as novel post-transcriptional regulators of numerous cellular responses. Although the involvement of miRNAs in the regulation of neuroinflammation in various neurological diseases has been previously studied, their role in the production of inflammatory mediators during microglia activation is poorly understood. In this study, the role of miR-26a has been investigated in the modulation of inflammatory response in cultured microglia. Using real-time PCR, the expression of miR-26a was studied in toll-like receptors 4 stimulated primary mouse microglia. miR-26a expression was found to be rapidly reduced after the stimulation of toll-like receptors 4 in microglia. Over-expression of miR-26a significantly decreased the production of inflammatory cytokines such as tumor necrosis factor α and IL-6, whereas knockdown of miR-26a increased the expression of these mediators. Furthermore, using in silico analysis, we identified that the activating transcription factor (ATF) 2 is directly targeted by miR-26a. This finding was confirmed by loss and gain of function studies. Similar to the effect of miR-26a over-expression, knockdown of activating transcription factor 2 inhibited the production of proinflammatory cytokines, particularly IL-6. Taken together, our results suggest the involvement of miR-26a in the regulation of the production of proinflammatory cytokines in microglia. We proposed that in microglia, activation of toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) down-regulates miR-26a. The down-regulation of this miR increases expression of activating transcription factor 2 (ATF2). This event, in addition to the activation of ATF2 by c-Jun N-terminal kinase (JNK), increases interleukin-6 (IL-6) production. On the other hand, miR-26a also increases the production of tumor necrosis factor α (TNFα) by a mechanism independent of ATF2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.13364 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFISME J
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China.
In the current work, lychee pulp was subjected to ATCC 14917 fermentation, leading to a substantial increase (2.32-2.67-fold) in water-soluble polysaccharides (WSP).
View Article and Find Full Text PDFJ Clin Invest
January 2025
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States of America.
Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom.
Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!